【題目】如圖,底面為正方形且各側(cè)棱長(zhǎng)均相等的四棱錐V﹣ABCD可繞著棱AB任意旋轉(zhuǎn),若AB平面α,M,N分別是AB,CD的中點(diǎn),AB=2,VA= ,點(diǎn)V在平面α上的射影為點(diǎn)O,則當(dāng)ON的最大時(shí),二面角C﹣AB﹣O的大小是(

A.90°
B.105°
C.120°
D.135°

【答案】B
【解析】解:設(shè)∠VMO=θ,
則∵M(jìn)、N分別是AB、CD的中點(diǎn),AB=2,VA= ,
∴AM=1,VM= = =2,
MN=BC=AB=2,VN=VM=2,
則三角形VNM為正三角形,則∠NMV=60°,
則OM=2cosθ,
在三角形OMN中,
ON2=MN2+OM2﹣2MNOMcos(60°+θ)=4+4cos2θ﹣2×2×2cosθcos(60°+θ)
=4+4cos2θ﹣8cosθ( cosθ﹣ sinθ)
=4+4cos2θ﹣4cos2θ+4 sinθcosθ
=4+2 sin2θ,
∴要使ON最大,則只需要sin2θ=1,即2θ=90°即可,則θ=45°,
此時(shí)二面角C﹣AB﹣O的大小∠OMN=60°+θ=60°+45°=105°,
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為a的等邊三角形ABC的中線AF與中位線DE交于點(diǎn)G,已知△A′DE(A′平面ABC)是△ADE繞DE旋轉(zhuǎn)過程中的一個(gè)圖形,有下列命題: ①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱錐A′﹣DEF的體積最大值為 a3;
④動(dòng)點(diǎn)A′在平面ABC上的射影在線段AF上;
⑤二面角A′﹣DE﹣F大小的范圍是[0, ].
其中正確的命題是(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】歐巴老師布置給時(shí)鎮(zhèn)同學(xué)這樣一份數(shù)學(xué)作業(yè):在同一個(gè)直角坐標(biāo)系中畫出四個(gè)對(duì)數(shù)函數(shù)的圖象,使它們的底數(shù)分別為 .時(shí)鎮(zhèn)同學(xué)為了和暮煙同學(xué)出去玩,問大英同學(xué)借了作業(yè)本很快就抄好了,詳見如圖.第二天,歐巴老師當(dāng)堂質(zhì)問時(shí)鎮(zhèn)同學(xué):“你畫的四條曲線中,哪條是底數(shù)為e的對(duì)數(shù)函數(shù)圖象?”時(shí)鎮(zhèn)同學(xué)無(wú)言以對(duì),憋得滿臉通紅,眼看時(shí)鎮(zhèn)同學(xué)就要被歐巴老師訓(xùn)斥一番,聰明睿智的你能不能幫他一把,回答這個(gè)問題呢?曲線才是底數(shù)為e的對(duì)數(shù)函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α∈(0, ),β∈(0, ),且滿足 cos2 + sin2 = + ,sin(2017π﹣α)= cos( π﹣β),則α+β=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,記正方形ABCD四條邊的中點(diǎn)為S,M,N,T,連接四個(gè)中點(diǎn)得小正方形SMNT.將正方形ABCD,正方形SMNT繞對(duì)角線AC旋轉(zhuǎn)一周得到的兩個(gè)旋轉(zhuǎn)體的體積依次記為V1 , V2 , 則V1:V2=(

A.8:1
B.2:1
C.4:3
D.8:3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量
(Ⅰ)若 , 共線,求x的值;
(Ⅱ)若 ,求x的值;
(Ⅲ)當(dāng)x=2時(shí),求 夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= x﹣lnx(x>0),則函數(shù)f(x)(
A.在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)無(wú)零點(diǎn)
B.在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)有零點(diǎn)
C.在區(qū)間(0,3),(3,+∞)均無(wú)零點(diǎn)
D.在區(qū)間(0,3),(3,+∞)均有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所列邊分別為a,b,c,且 . (Ⅰ)求角A;
(Ⅱ)若 ,試判斷bc取得最大值時(shí)△ABC形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下面四個(gè)命題: (1.)從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是系統(tǒng)抽樣;
(2.)兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
(3.)對(duì)分類變量X和Y的隨機(jī)變量K2的觀測(cè)值k來說,k越小,“X與Y有關(guān)系”的把握程度越大;
(4.)在回歸直線方程 =0.4x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量大約增加0.4個(gè)單位.
其中真命題的個(gè)數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案