(本小題滿分13分)已知橢圓C的中心在坐標(biāo)原點(diǎn),離心率,且其中一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.(Ⅰ)求橢圓C的方程;(Ⅱ)過點(diǎn)的動(dòng)直線l交橢圓CA、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得無論l如何轉(zhuǎn)動(dòng),以AB為直徑的圓恒過點(diǎn)T,若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.
解:(Ⅰ)設(shè)橢圓的方程為,離心率,拋物線的焦點(diǎn)為,所以,橢圓C的方程是x2+="1." …………(4分)
(Ⅱ)若直線lx軸重合,則以AB為直徑的圓是x2+y2=1,若直線l垂直于x軸,則以AB為直徑的圓是(x+)2+y2=
解得即兩圓相切于點(diǎn)(1,0).
因此所求的點(diǎn)T如果存在,只能是(1,0).…………(6分)
事實(shí)上,點(diǎn)T(1,0)就是所求的點(diǎn).證明如下:
當(dāng)直線l垂直于x軸時(shí),以AB為直徑的圓過點(diǎn)T(1,0).
若直線l不垂直于x軸,可設(shè)直線ly=k(x+).由即(k2+2)x2+k2x+k2-2=0.
記點(diǎn)A(x1,y1),B(x2,y2),則…………(9分)
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823194234002393.png" style="vertical-align:middle;" />=(x1-1, y1), =(x2-1, y2),
·=(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+)(x2+)
=(k2+1)x1x2+(k2-1)(x1+x2)+k2+1 =(k2+1) +(k2-1) + +1=0,
所以TATB,即以AB為直徑的圓恒過點(diǎn)T(1,0).
所以在坐標(biāo)平面上存在一個(gè)定點(diǎn)T(1,0)滿足條件. …………(13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果橢圓上一點(diǎn)P到焦點(diǎn)的距離等于6,那么點(diǎn)P到另一個(gè)焦點(diǎn)的距離是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)已知橢圓的左焦點(diǎn)是長軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且不與y軸垂直的直線交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為
(1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線軸時(shí),求的值;
(2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)在橢圓上,、分別是該橢圓的兩焦點(diǎn),且,則的面積是(   )
A. 1B. 2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦距為   (   )
A.5B.3C. 4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓經(jīng)過點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)軸上,離心率
求橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓,過點(diǎn)作傾斜角為的直線交橢圓于、兩點(diǎn),為坐標(biāo)原點(diǎn),則的面積為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,點(diǎn)B在橢圓上,且BF⊥x軸,直線AB交y軸于點(diǎn)P.若=2,則橢圓的離心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的離心率為,則的值為 ____________

查看答案和解析>>

同步練習(xí)冊答案