已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O為AB的中點.

(Ⅰ)求證:EO⊥平面ABCD;
(Ⅱ)求點D到平面AEC的距離.
(Ⅰ)詳見解析; (Ⅱ) 點D到平面AEC的距離為

試題分析:(Ⅰ)求證EO⊥平面ABCD,只需證明垂直平面內(nèi)的兩條直線即可,注意到,則為等腰直角三角形,的中點,從而得,由已知可知為邊長為2的等邊三角形,可連接CO,利用勾股定理,證明EO⊥CO,利用線面垂直的判定,可得EO⊥平面ABCD;(Ⅱ)求點D到平面AEC的距離,求點到平面的距離方法有兩種,一.垂面法,二.等體積法,此題的體積容易求,且的面積也不難求出,因此可利用等體積,即,從而可求點D到面AEC的距離.
試題解析:(Ⅰ)連接CO.                       
,∴△AEB為等腰直角三角形.              1分
∵O為AB的中點,∴EO⊥AB,EO=1.                            2分
又∵四邊形ABCD是菱形,∠ABC=60°,
∴△ACB是等邊三角形,
∴CO=.                                                     3分
又EC=2,∴EC2=EO2+CO2,∴EO⊥CO.                         4分
又CO?平面ABCD,EO平面ABCD,∴EO⊥平面ABCD.          6分
(Ⅱ)設(shè)點D到平面AEC的距離為h.
∵AE=,AC=EC=2,∴SAEC.                             8分
∵SADC,E到平面ACB的距離EO=1,VD-AEC=VE-ADC,         9分
∴SAEC·h=SADC·EO,∴h=,                                11分
∴點D到平面AEC的距離為.                                  12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(如圖1)在平面四邊形中,中點,,,且,現(xiàn)沿折起使,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點,并且ABCD為正方形,設(shè)F,G,H分別為PB,EB,PC的中點.

(1)求三棱錐的體積;
(2)在線段PC上是否存在一點M,使直線與直線所成角為?若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱中, D是 AC的中點。

求證://平面 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題13分)如圖,棱錐的底面是矩形,⊥平面,,

(1)求證:⊥平面
(2)求二面角的大;
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a,b,c是三條不同的直線,是三個不同的平面,上述命題中真命題的是
A.若a⊥c,b⊥c,則a∥b或a⊥b
B.若,,則;
C.若a,b,c,a⊥b, a⊥c,則;
D.若a⊥, b,a∥b,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知兩個平面垂直,下列命題中:
(1)一個平面內(nèi)已知直線必垂直于另一個平面內(nèi)的任意一條直線;
(2)一個平面內(nèi)已知直線必垂直于另一個平面內(nèi)的無數(shù)條直線;
(3)一個平面內(nèi)的任意一條直線必垂直于另一個平面;
(4)過一個平面內(nèi)任意一點作交線的垂線,則此垂線必垂直于另一個平面.
其中正確命題的個數(shù)有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面幾何里,有勾股定理:“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的面面積與底面面積間的關(guān)系?梢缘贸龅恼_結(jié)論是:“設(shè)三棱錐A—BCD的三個側(cè)面ABC、ACD、ADB兩兩相互垂直,則                                       ”.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè),是兩條不同直線,,是兩個不同平面,則下列命題錯誤的是(   )
A.若,,則B.若,則
C.若,,則D.若,,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,正方體ABCDA1B1C1D1的棱長為4,M為BD1的中點,N在A1C1上,且|A1N|=3|NC1|,則MN的長為   .

查看答案和解析>>

同步練習冊答案