18.如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1,若A1C與平面B1BCC1所成的角為$\frac{π}{6}$,則三棱錐A1-ABC的體積為$\frac{\sqrt{2}}{6}$.

分析 由已知可得A1B1⊥平面BB1C1C,連接B1C,則∠A1CB1為A1C與平面B1BCC1所成的角為$\frac{π}{6}$,求解直角三角形得到BB1,再由棱錐體積公式求得三棱錐A1-ABC的體積.

解答 解:如圖,

在直三棱柱ABC-A1B1C1中,∵∠ABC=90°,
A1B1⊥平面BB1C1C,連接B1C,則∠A1CB1為A1C與平面B1BCC1所成的角為$\frac{π}{6}$,
∵A1B1=AB=1,∴${B}_{1}C=\sqrt{3}$,
又BC=1,∴$B{B}_{1}=\sqrt{2}$.
∴${V}_{{A}_{1}-ABC}=\frac{1}{3}×\frac{1}{2}×1×1×\sqrt{2}=\frac{\sqrt{2}}{6}$.
故答案為:$\frac{\sqrt{2}}{6}$.

點評 本題考查棱柱、棱錐、棱臺體積的求法,考查空間想象能力和思維能力,考查直角三角形的解法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=-2x+3,x∈[1,3]的值域為[-3,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.集合A={x|0≤x<4,且x∈N}的真子集的個數(shù)是( 。
A.16B.8C.15D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.a(chǎn)=3,b=4焦點在x軸上的雙曲線的標準方程為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)f(x)=1+log2x(x≥1)的反函數(shù)f-1(x)=2x-1(x≥1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列{an}的各項均為正數(shù),且a1=1,對任意的n∈N*,均有an+12-1=4an(an+1),bn=2log2(1+an)-1.
(1)求證:{1+an}是等比數(shù)列,并求出{an}的通項公式;
(2)若數(shù)列{bn}中去掉{an}的項后,余下的項組成數(shù)列{cn},求c1+c2+…+c100;
(3)設dn=$\frac{1}{_{n}•_{n+1}}$,數(shù)列{dn}的前n項和為Tn,是否存在正整數(shù)m(1<m<n),使得T1、Tm、Tn成等比數(shù)列,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.高三(一)班要安排畢業(yè)晚會的4個音樂節(jié)目,2個舞蹈節(jié)目和1個曲藝節(jié)目的演出順序,要求兩個舞蹈節(jié)目不連排,則不同排法的種數(shù)是( 。
A.1 800B.3 600C.4 320D.5 040

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)y=f(x)的圖象關于直線x=1對稱,且在[1,+∞)單調(diào)遞減,f(0)=0,則f(x+1)>0的解集為(  )
A.(1,+∞)B.(-1,1)C.(-∞,-1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)滿足f(-x)=-f(x),且f(x+2)=f(x),當0≤x≤1時,f(x)=2x(1-x),則f(-$\frac{5}{2}$)=( 。
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案