【題目】如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.
(1)證明:平面.
(2)求直線與平面所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】去年年底,某商業(yè)集團公司根據(jù)相關評分細則,對其所屬25家商業(yè)連鎖店進行了考核評估.將各連鎖店的評估分數(shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團公司依據(jù)評估得分,將這些連鎖店劃分為A,B,C,D四個等級,等級評定標準如下表所示.
評估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
評定等級 | D | C | B | A |
(1)估計該商業(yè)集團各連鎖店評估得分的眾數(shù)和平均數(shù);
(2)從評估分數(shù)不小于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求至少選一家A等級的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,,其中a,.
Ⅰ求的極大值;
Ⅱ設,,若對任意的,恒成立,求a的最大值;
Ⅲ設,若對任意給定的,在區(qū)間上總存在s,,使成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調區(qū)間和極值;
(2)設定義在上的函數(shù)的最大值為,最小值為,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的短軸長為,過點,的直線傾斜角為.
(1)求橢圓的方程;
(2)是否存在過點且斜率為的直線,使直線交橢圓于兩點,以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一塊半圓形的空地,直徑米,政府計劃在空地上建一個形狀為等腰梯形的花圃,如圖所示,其中為圓心,,在半圓上,其余為綠化部分,設.
(1)記花圃的面積為,求的最大值;
(2)若花圃的造價為10元/米,在花圃的邊、處鋪設具有美化效果的灌溉管道,鋪設費用為500元/米,兩腰、不鋪設,求滿足什么條件時,會使總造價最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)若函數(shù)存在兩個零點.
①實數(shù)的取值范圍;
②證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內報名人數(shù)便突破60萬,其中青年學生約有50萬人.現(xiàn)從這50萬青年學生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:分)統(tǒng)計結果用莖葉圖記錄如下:
(Ⅰ)試估計在這50萬青年學生志愿者中,英語測試成績在80分以上的女生人數(shù);
(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數(shù)為X,求的分布列和數(shù)學期望;
(Ⅲ)為便于聯(lián)絡,現(xiàn)將所有的青年學生志愿者隨機分成若干組(每組人數(shù)不少于5000),并在每組中隨機選取個人作為聯(lián)絡員,要求每組的聯(lián)絡員中至少有1人的英語測試成績在70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等腰直角中,,,點、分別是、的中點.現(xiàn)沿邊折起成如圖四棱錐,為中點.
(1)證明:面;
(2)當時,求二面角的平面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com