【題目】函數(shù)f(x)= 的定義域為R,則實數(shù)a的取值范圍為(
A.(0,1)
B.[0,1]
C.(0,1]
D.[1,+∞)

【答案】B
【解析】解:∵函數(shù)f(x)=的定義域為R, ∴說明對任意的實數(shù)x,都有ax2+2ax+1≥0成立,
當(dāng)a=0時,1>0顯然成立,
當(dāng)a≠0時,需要
解得:0<a≤1,
綜上,函數(shù)f(x)的定義域為R的實數(shù)a的取值范圍是[0,1],
故選:B.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的定義域及其求法的相關(guān)知識可以得到問題的答案,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題實數(shù)滿足,其中,命題實數(shù)滿足.

(1)若,有為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列, 滿足 ,且, .

(1)求

(2)猜想 的通項公式,并證明你的結(jié)論;

(3)證明:對所有的, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=f(x)滿足f(﹣2)=f(4)=﹣16,且f(x)最大值為2.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)在[t,t+1](t>0)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,其中的導(dǎo)函數(shù).

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=log2x,x∈(0,2),若關(guān)于x的方程|g(x)|2+m|g(x)|+2m+3=0有三個不同實數(shù)解,則實數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)A的周長和面積同時等分成兩部分的函數(shù)稱為圓的一個“太極函數(shù)”.下列有關(guān)說法中:

①對圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);

②函數(shù)是圓的一個太極函數(shù);

③存在圓,使得是圓的太極函數(shù);

④直線所對應(yīng)的函數(shù)一定是圓的太極函數(shù).

所有正確說法的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賽季,甲、乙兩名籃球運動員都參加了7場比賽,他們所有比賽得分的情況用如圖所示的莖葉圖表示.

(1)求甲、乙兩名運動員得分的中位數(shù);

(2)你認為哪位運動員的成績更穩(wěn)定?

(3)如果從甲、乙兩位運動員的7場得分中各隨機抽取一場的得分,求甲的得分大于乙的得分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品在近30天內(nèi)每件的銷售價格P(元)與時間t(天)的函數(shù)關(guān)系式近似滿足P= ,商品的日銷售量Q(件)與時間t(天)的函數(shù)關(guān)系式近似滿足Q=﹣t+40(1≤t≤30,t∈N).
(1)求這種商品日銷售金額y與時間t的函數(shù)關(guān)系式;
(2)求y的最大值,并指出日銷售金額最大的一天是30天中第幾天.

查看答案和解析>>

同步練習(xí)冊答案