拋物線P:x2=2py上一點(diǎn)Q(m,2)到拋物線P的焦點(diǎn)的距離為3,A、B、C、D為拋物線的四個(gè)不同的點(diǎn),其中A、D關(guān)于y軸對(duì)稱(chēng),D(x0,y0),B(x1,y1),C(x2,y2),-x0<x1<x0<x2,直線BC平行于拋物線P的以D為切點(diǎn)的切線.
(1)求p的值;
(2)證明:∠BAC的角平分線在直線AD上;
(3)D到直線AB、AC的距離分別為m、n,且m+n=
2
|AD|
,△ABC的面積為48,求直線BC的方程.
分析:(1)由|QF|=3=2+
p
2
,能求出p.
(2)由拋物線方程為x2=4y,知A(-x0,
x
2
0
4
),D(x0,
x
2
0
4
),B(x1,
x
2
1
4
),C(x2
x
2
2
4
),由y′=
x
2
,知KBC=
x
2
1
4
-
x
2
2
4
x1-x2
=
x1+x2
4
=
x0
2
,由此能推導(dǎo)出∠BAC的角平分線在直線AD上.
(3)設(shè)∠BAD=∠CAD=α,則m=n=|AD|sinα,sinα=
2
2
.由此能推導(dǎo)出直線BC的方程.
解答:解:(1)∵|QF|=3=2+
p
2
∴p=2(2分)
(2)∴拋物線方程為x2=4y
A(-x0
x
2
0
4
),D(x0,
x
2
0
4
),B(x1,
x
2
1
4
),C(x2,
x
2
2
4
)∵y′=
x
2

KBC=
x
2
1
4
-
x
2
2
4
x1-x2
=
x1+x2
4
=
x0
2
∴x1+x2=2x0KAC=
x
2
2
4
-
x
2
0
4
x2+x0
=
x2-x0
4
KAB=
x
2
1
4
-
x
2
0
4
x1+x0
=
x1-x0
4

KAC+KAB=
x2-x0
4
+
x1-x 0
4
=
x 1+x2-2x0
4
=0

所以直線AC和直線AB的傾斜角互補(bǔ),所以∠BAD=∠CAD∴∠BAC的角平分線在直線AD上(6分)
(3)設(shè)∠BAD=∠CAD=α
則m=n=|AD|sinα∴sinα=
2
2
,∵α∈(0.
π
2
)∴α=
π
4
lAC:y-
x
2
0
4
=x+x0
y=x+
x
2
0
4
+x0

把lACy=x+
x
2
0
4
+x0
與拋物線方程x2=4y聯(lián)立的x2-4x-4x0-x02=0∴-x0x2=-4x0-x02∴x2=x0+4
同理可得x1=x0-4∵-x0<x0-4<x0∴x0>2∴S△ABC=
1
2
|AB||AC|=
1
2
2
(4+2x0)
2
(2x0-4)=4(
x
2
0
-4)=48

∴x0=4(10分)∴B(0,0)∴l(xiāng)BC:y=2x(12分)
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.
(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),|AB|=4
10
.求此時(shí)拋物線的方程;
(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱(chēng)點(diǎn)D在拋物線x2=2py(p>0)上,其中,點(diǎn)C滿足
OC
=
OA
+
OB
(O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.
(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,2p)時(shí),|AB|=4
10
,求此時(shí)拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)拋物線方程為x2=2py(p>0),M為直線l:y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A、B.
(1)設(shè)拋物線上一點(diǎn)P到直線l的距離為d,F(xiàn)為焦點(diǎn),當(dāng)d-|PF|=
32
時(shí),求拋物線方程;
(2)若M(2,-2),求線段AB的長(zhǎng);
(3)求M到直線AB的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年山東卷理)(本小題滿分14分)

如圖,設(shè)拋物線方程為x2=2py(p>0),M為 直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為AB.

(Ⅰ)求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),,求此時(shí)拋物線的方程;

(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱(chēng)點(diǎn)D在拋物線上,其中,點(diǎn)C滿足O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)拋物線方程為x2=2py(p>0),M為 直線y=-2p上任意一點(diǎn),過(guò)M引拋物線的切線,切點(diǎn)分別為A,B.

(Ⅰ)求證:A,MB三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(Ⅱ)已知當(dāng)M點(diǎn)的坐標(biāo)為(2,-2p)時(shí),,求此時(shí)拋物線的方程;

(Ⅲ)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對(duì)稱(chēng)點(diǎn)D在拋物線上,其中,點(diǎn)C滿足O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案