已知定圓A:(x+1)2+y2=16,圓心為A,動圓M過點B(1,0)且和圓A相切,動圓的圓心M的軌跡記為C.
(I)求曲線C的方程;
(II)若點P(x,y)為曲線C上一點,求證:直線l:3xx+4yy-12=0與曲線C有且只有一個交點.
【答案】
分析:(I)依據(jù)條件判斷定圓和動圓相內(nèi)切,再依據(jù)橢圓的定義寫出曲線C的方程.
(II)分類討論,當(dāng)y
=0時,檢驗直線l:3x
x+4y
y-12=0與曲線C有且只有一個交點,當(dāng)y
≠0時,把直線和橢圓方程聯(lián)立方程組,利用點P(x
,y
)為曲線C上一點,求出只有一個解,并說明直線和橢圓只有唯一交點.
解答:解:(I)圓A的圓心為A(-1,0),半徑r
1=4,
設(shè)動圓M的圓心M(x,y),半徑為r
2,依題意有,r
2=|MB|.
由|AB|=2,可知點B在圓A內(nèi),從而圓M內(nèi)切于圓A,
故|MA|=r
1-r
2,即|MA|+|MB|=4,
所以,點M的軌跡是以A,B為焦點的橢圓,
設(shè)橢圓方程為
,由2a=4,2c=2,可得a
2=4,b
2=3.
故曲線C的方程為
(6分)
(II)解:當(dāng)
,當(dāng)x
=2,y
=0時,直線l的方程為x
=2,
直線l與曲線C有且只有一個交點(2,0).
當(dāng)x
=-2,y
=0時,直線l的方程為x
=-2,
直線l與曲線C有且只有一個交點(-2,0).
,
消去y,得(4y
2+3x
3)x
2-24x
x+48-16y
2=0.①
由點P(x
,y
)為曲線C上一點,
于是方程①可以化簡為x
2-2x
x+x
2=0.解得x=x
,
,
故直線l與曲線C有且有一個交點P(x
,y
),
綜上,直線l與曲線C有且只有一個交點,且交點為P(x
,y
).(13分)
點評:本題考查兩圓的位置關(guān)系、用定義法求軌跡方程,直線和橢圓位置關(guān)系的綜合應(yīng)用.