已知定圓A:(x+1)2+y2=16,圓心為A,動圓M過點(diǎn)B(1,0)且和圓A相切,動圓的圓心M的軌跡記為C.
(I)求曲線C的方程;
(II)若點(diǎn)P(x0,y0)為曲線C上一點(diǎn),求證:直線l:3x0x+4y0y-12=0與曲線C有且只有一個(gè)交點(diǎn).
分析:(I)依據(jù)條件判斷定圓和動圓相內(nèi)切,再依據(jù)橢圓的定義寫出曲線C的方程.
(II)分類討論,當(dāng)y0=0時(shí),檢驗(yàn)直線l:3x0x+4y0y-12=0與曲線C有且只有一個(gè)交點(diǎn),當(dāng)y0≠0時(shí),把直線和橢圓方程聯(lián)立方程組,利用點(diǎn)P(x0,y0)為曲線C上一點(diǎn),求出只有一個(gè)解,并說明直線和橢圓只有唯一交點(diǎn).
解答:解:(I)圓A的圓心為A(-1,0),半徑r
1=4,
設(shè)動圓M的圓心M(x,y),半徑為r
2,依題意有,r
2=|MB|.
由|AB|=2,可知點(diǎn)B在圓A內(nèi),從而圓M內(nèi)切于圓A,
故|MA|=r
1-r
2,即|MA|+|MB|=4,
所以,點(diǎn)M的軌跡是以A,B為焦點(diǎn)的橢圓,
設(shè)橢圓方程為
+=1,由2a=4,2c=2,可得a
2=4,b
2=3.
故曲線C的方程為
+=1.(6分)
(II)解:當(dāng)
y0=0時(shí),由+=1,可得x0=±2,當(dāng)x
0=2,y
0=0時(shí),直線l的方程為x
0=2,
直線l與曲線C有且只有一個(gè)交點(diǎn)(2,0).
當(dāng)x
0=-2,y
0=0時(shí),直線l的方程為x
0=-2,
直線l與曲線C有且只有一個(gè)交點(diǎn)(-2,0).
當(dāng)y0≠0時(shí),直線l的方程為y=,
聯(lián)立方程組:消去y,得(4y
02+3x
03)x
2-24x
0x+48-16y
02=0.①
由點(diǎn)P(x
0,y
0)為曲線C上一點(diǎn),
得+=1.?可得4+3=12.于是方程①可以化簡為x
2-2x
0x+x
02=0.解得x=x
0,
將x=x0代入方程y=可得y=y0,
故直線l與曲線C有且有一個(gè)交點(diǎn)P(x
0,y
0),
綜上,直線l與曲線C有且只有一個(gè)交點(diǎn),且交點(diǎn)為P(x
0,y
0).(13分)
點(diǎn)評:本題考查兩圓的位置關(guān)系、用定義法求軌跡方程,直線和橢圓位置關(guān)系的綜合應(yīng)用.