(08年新建二中五模理)某先生居住在城鎮(zhèn)的處,準備開車到單位處上班,若該地各路段發(fā)生堵車事件都是相互獨
立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如下圖(如 算作兩個路段:路段發(fā)生堵車事件的概率為,
路段發(fā)生堵車事件的概率為).
(Ⅰ)請你為其選擇一條由到的路線,便得途中發(fā)生堵車事件的概率最;
(Ⅱ)若記路線中遇到堵車次數為隨機變量,求的數學期望.
解析:(1)記路段MN發(fā)生堵車事件為MN.因為各路段發(fā)生堵車事件都是獨立的,且在同一路段發(fā)生堵車事件最多只有一次,所以路線A→C→D→B中遇到堵車的概率為
同理:路線A→C→F→B中遇到堵車的概率為為.(小于).
路線A→E→F→B中遇到堵車的概率為(小于)
顯然要使得由A到B的路線途中發(fā)生堵車事件的概率最小,只可能在以上三條路線中選擇.因此選擇路線A→C→F→B,可使得途中發(fā)生堵車事件的概率最。
(2)路線A→C→F→B中遇到堵車次數可取值為0,1,2,3.
P(=0)= P(??)=,
P(=1)= P(AC??)+P(?CF?)+P(??FB)
=??+??+??=,
P(=2)=P(AC?CF?)+P(AC??FB)+P(?CF?FB)
=??+??+??=,
P(=3)=P(AC?CF?)=??=,
∴E= 0 × .
答:路線A→C→F→B中遇到堵車次數的數學期望為.
科目:高中數學 來源: 題型:
(08年新建二中五模) 已知動點與雙曲線的兩個焦點、的距離之和為定值,且的最小值為.
⑴求動點的軌跡方程;
⑵若已知,、在動點的軌跡上且,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
(08年新建二中五模理) 設函數其中常數為整數.
⑴當為何值時,;
⑵定理:若函數在上連續(xù),且與異號,則至少存在一點,使.
試用上述定理證明:當整數時,方程,在內有兩個實根.
查看答案和解析>>
科目:高中數學 來源: 題型:
(08年新建二中五模文)甲、乙兩人各射擊一次,擊中目標的概率分別是和.假設兩人射擊是否擊中目相互之間
沒有影響;每次射擊是否擊中目標,相互之間沒有影響.
⑴求甲射擊次,至少次未擊中目標的概率;
⑵求兩人各射擊次,甲恰好擊中目標次且乙恰好擊中目標次的概率;
⑶假設某人連續(xù)次未擊中目標,則停止射擊.問:乙恰好射擊次后,被中止射擊的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
(08年新建二中五模) 已知向量,向量與向量夾角為,且.
(Ⅰ)求向量;
(Ⅱ)若向量與向量的夾角為,向量,其中、為的內角,且、、依次成等差數列.求的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com