【題目】一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4噸、硝酸鹽18噸;生產(chǎn)1車皮乙種肥料的主要原料是磷酸鹽1噸、硝酸鹽15噸,現(xiàn)庫存磷酸鹽10噸、硝酸鹽66噸,在此基礎上生產(chǎn)這兩種混合肥料。如果生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為12000元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為7000元。那么可產(chǎn)生最大的利潤是__________元.

【答案】38000元

【解析】x、y分別表示計劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).

由題意,得

工廠的總利潤z=12000x+7000y

由約束條件得可行域如圖,

,解得:

所以最優(yōu)解為A(2,2),

則當直線12000x+7000y﹣z=0過點A(2,2)時,

z取得最大值為:38000元,即生產(chǎn)甲、乙兩種肥料各2車皮時可獲得最大利潤.

故答案為38000元

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表如下,頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間[25,30)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖,過拋物線上一定點,作兩條直線分別交拋物線于,

(1)求該拋物線上縱坐標為的點到其焦點的距離;

(2)的斜率存在且傾斜角互補時,求的值,并證明直線的斜率是非零常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當時,記函數(shù)的極小值為,若恒成立,求滿足條件的最小整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知由自然數(shù)組成的元集合,非空集合,且對任意的,都有.

(1)時,求所有滿足條件的集合;

(2)時,求所有滿足條件的集合的元素總和;

(3)定義一個集合的交替和如下:按照遞減的次序重新排列該集合的元素,然后從最大數(shù)開始交替地減、加后繼的數(shù).例如集合的交替和是,集合的交替和為.時,求所有滿足條件的集合交替和的總和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是滿足下述條件的所有函數(shù)組成的集合:對于函數(shù)定義域內(nèi)的任意兩個自變量、,均有成立.

(1)已知定義域為的函數(shù),求實數(shù)、的取值范圍;

(2)設定義域為的函數(shù),且,求正實數(shù)的取值范圍;

(3)已知函數(shù)的定義域為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:Cx=若不建隔熱層,每年能源消耗費用為8萬元。設fx)為隔熱層建造費用與20年的能源消耗費用之和。

)求k的值及f(x)的表達式。

)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)處有極小值,則實數(shù)等于__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對稱軸為坐標軸的橢圓的焦點為,上.

(1)求橢圓的方程;

(2)設不過原點的直線與橢圓交于兩點,且直線,,的斜率依次成等比數(shù)列,則當的面積為時,求直線的方程.

查看答案和解析>>

同步練習冊答案