精英家教網 > 高中數學 > 題目詳情

如圖,已知三棱錐中,,,中點, 中點,且為正三角形。

(Ⅰ)求證://平面;

(Ⅱ)求證:平面⊥平面

(III)若,,求三棱錐的體積.

 

【答案】

(Ⅰ)由M為AB中點,D為PB中點,得到MD//AP,推出DM//平面APC.

(Ⅱ)由△PMB為正三角形,且D為PB中點.得到MD⊥PB.

又由(1)知MD//AP,推出AP⊥PB.

推出AP⊥平面PBC,得到AP⊥BC,推出平面ABC⊥平面PAC;

(Ⅲ)VD-BCM = VM-BCD =

【解析】

試題分析:(Ⅰ)∵M為AB中點,D為PB中點,

∴MD//AP,  又∴MD平面ABC

∴DM//平面APC.                              3分

(Ⅱ)∵△PMB為正三角形,且D為PB中點.∴MD⊥PB.

又由(1)∴知MD//AP, ∴AP⊥PB.

又已知AP⊥PC  ∴AP⊥平面PBC,

∴AP⊥BC,  又∵AC⊥BC.                       7分

∴BC⊥平面APC,  ∴平面ABC⊥平面PAC,

(Ⅲ)∵ AB=20

∴ MB=10   ∴PB=10

又 BC=4,

又MD

∴VD-BCM = VM-BCD =       12分

考點:本題主要考查立體幾何中的平行關系、垂直關系,體積的計算。

點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題計算體積時運用了“等體積法”,簡化了解答過程。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(09年萊陽一中期末文)(12分)

如圖,已知三棱錐中,中點,中點,且△為正三角形。

(1)       求證:∥平面;

(2)       求證:平面平面

(3)       若,,求三棱錐的體積。

查看答案和解析>>

科目:高中數學 來源:2012-2013學年吉林省吉林市高三三模(期末)文科數學試卷(解析版) 題型:解答題

如圖,已知三棱錐中,,,中點, 中點,且為正三角形。

(Ⅰ)求證://平面;

(Ⅱ)求證:平面⊥平面;

(III)若,求三棱錐的體積.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省高三12月月考文科數學試卷 題型:解答題

如圖,已知三棱錐中,, ,中點,中點,且△為正三角形。

(1)求證:∥平面;

(2)求證:平面⊥平面.

 

 

 

查看答案和解析>>

科目:高中數學 來源:2013屆吉林省高二上學期期末考試理科數學試卷 題型:解答題

如圖:已知三棱錐中,,,,上一點,,分別為的中點.    

(1)證明:.

(2)求面與面所成的銳二面角的余弦值.

 (3)在線段(包括端點)上是否存在一點,使平面?若存在,確定的位置;若不存在,說明理由.

 

 

 

查看答案和解析>>

同步練習冊答案