如圖,已知三棱錐中,,,為中點,為 中點,且為正三角形。
(Ⅰ)求證://平面;
(Ⅱ)求證:平面⊥平面;
(III)若,,求三棱錐的體積.
(Ⅰ)、(Ⅱ)詳見解析(III).
【解析】
試題分析:(Ⅰ)利用中位線性質得到線線平行,根據(jù)線面平行的判定判定直線與平面平行;(Ⅱ)利用正三角形中點得到線線垂直,根據(jù)平行推得線線垂直,利用直線與平面垂直判定面面垂直;(Ⅲ)利用三棱錐的體積公式計算體積.
試題解析:(Ⅰ)∵M為AB中點,D為PB中點,
∴MD//AP, 又∴MD平面ABC
∴DM//平面APC. 3分
(Ⅱ)∵△PMB為正三角形,且D為PB中點.∴MD⊥PB.
又由(1)∴知MD//AP, ∴AP⊥PB.
又已知AP⊥PC ∴AP⊥平面PBC,
∴AP⊥BC, 又∵AC⊥BC. 7分
∴BC⊥平面APC, ∴平面ABC⊥平面PAC,
(Ⅲ)∵ AB=20
∴ MB=10 ∴PB=10
又 BC=4,.
∴.
又MD.
∴VD-BCM = VM-BCD =. 12分
考點:直線與平面平行的判定;平面與平面垂直的判定,三棱錐體積計算.
科目:高中數(shù)學 來源: 題型:
(09年萊陽一中期末文)(12分)
如圖,已知三棱錐中,為中點,為中點,且△為正三角形。
(1) 求證:∥平面;
(2) 求證:平面平面;
(3) 若,,求三棱錐的體積。
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年吉林省吉林市高三第三次模擬考試文科數(shù)學試卷(解析版) 題型:解答題
如圖,已知三棱錐中,,,為中點,為 中點,且為正三角形。
(Ⅰ)求證://平面;
(Ⅱ)求證:平面⊥平面;
(III)若,,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省高三12月月考文科數(shù)學試卷 題型:解答題
如圖,已知三棱錐中,, ,為中點,為中點,且△為正三角形。
(1)求證:∥平面;
(2)求證:平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆吉林省高二上學期期末考試理科數(shù)學試卷 題型:解答題
如圖:已知三棱錐中,面,,,為上一點,,分別為的中點.
(1)證明:.
(2)求面與面所成的銳二面角的余弦值.
(3)在線段(包括端點)上是否存在一點,使平面?若存在,確定的位置;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com