【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)求的極大值與極小值;

(3)寫出利用導數(shù)方法求函數(shù)極值點的步驟.

【答案】(1)單調(diào)遞增區(qū)間是、,單調(diào)遞減區(qū)間是.(2) 處取得極大值,處取得極小值.

(3)答案見解析.

【解析】試題分析:

(1)由導函數(shù)與原函數(shù)的關系結(jié)合題意可得函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.

(2)結(jié)合導函數(shù)的符號和函數(shù)的單調(diào)性可得處取得極大值,處取得極小值.

(3)由題意寫出利用導數(shù)方法求函數(shù)極值點的步驟即可.

試題解析:

(1)

,得

時,,故上為增函數(shù);

,故 上為減函數(shù);

,故 上為增函數(shù).

所以單調(diào)遞增區(qū)間是、,單調(diào)遞減區(qū)間是.

(2)由(1)可知處取得極大值,處取得極小值.

(3)第一步:求出函數(shù)的定義域;

第二步:求出導數(shù);

第三步:解方程;

第四步:對于方程的每一個解,分析左、右兩側(cè)的符號(即

的單調(diào)性),確定極值點:

①若在兩側(cè)的符號“左正右負”,則為極大值點;

②若在兩側(cè)的符號“左負右正”,則為極小值點;

③若在兩側(cè)的符號相同,則不是極值點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】用隨機模擬的方法估算邊長是2的正方形內(nèi)切圓的面積(如圖所示),并估計π的近似值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為,對任意都有,且當時, .

(1)試判斷的單調(diào)性,并證明;

(2),

①求的值;

②求實數(shù)的取值范圍,使得方程有負實數(shù)根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值4 和最小值1,設.

(1)求的值;

(2)若不等式在區(qū)間上有解,求實數(shù)的取值范圍;

(3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

性別
是否需要志愿者



需要

40

30

不需要

160

270

1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

2)請根據(jù)上面的數(shù)據(jù)分析該地區(qū)的老年人需要志愿者提供幫助與性別有關嗎

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】各項均為正數(shù)的數(shù)列{an}中,前n項和

(1)求數(shù)列{an}的通項公式;

(2)若恒成立,求k的取值范圍;

(3)是否存在正整數(shù)mk,使得am,am+5,ak成等比數(shù)列?若存在,求出mk的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次不等式ax2+x+b>0的解集為(-∞,-2)∪(1,+∞).

(Ⅰ)求ab的值;

(Ⅱ)求不等式ax2-(c+bx+bc<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求函數(shù)的極小值;

(Ⅱ)設定義在上的函數(shù)在點處的切線方程為,當時,若內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點”.當時,試問函數(shù)是否存在“轉(zhuǎn)點”?若存在,求出轉(zhuǎn)點的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學高三年級有學生500人,其中男生300人,女生200人。為了研究學生的數(shù)學成績是否與性別有關,采用分層抽樣的方法,從中抽取了100名學生,統(tǒng)計了他們期中考試的數(shù)學分數(shù),然后按照性別分為男、女兩組,再將兩組的分數(shù)分成5組: 分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖。

(I)從樣本分數(shù)小于110分的學生中隨機抽取2人,求兩人恰為一男一女的概率;

(II)若規(guī)定分數(shù)不小于130分的學生為“數(shù)學尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數(shù)學尖子生與性別有關”?

附表:

查看答案和解析>>

同步練習冊答案