【題目】由0,1,2,3,4,5,6,7,8,9組成沒有重復數(shù)字的五位數(shù),且是奇數(shù),其中恰有兩個數(shù)字是偶數(shù),則這樣的五位數(shù)的個數(shù)為( ).
A.7200B.6480C.4320D.5040
【答案】B
【解析】
以偶數(shù)數(shù)字取不取0,分兩類討論,每類用先取后排的策略即可
第一類,偶數(shù)數(shù)字取0
先從1,3,5,7,9中取3個奇數(shù),從2,4,6,8中取1個偶數(shù),
有中取法,然后將個位數(shù)排一個奇數(shù),十位、百位、千位
選一個出來排0,剩下3個數(shù)字全排列,即有種排法
所以本類滿足條件的五位數(shù)有個
第二類,偶數(shù)數(shù)字不取0,
先從1,3,5,7,9中取3個奇數(shù),從2,4,6,8中取2個偶數(shù),
有中取法,然后將個位數(shù)排一個奇數(shù),剩下4個數(shù)字全排列,
即有種排法
所以本類滿足條件的五位數(shù)有個
綜上:這樣的五位數(shù)個數(shù)為
故選:B
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的個數(shù)有( )
(1)在空間直角坐標系中,點關于平面的對稱點為,則點關于原點的對稱點的坐標為.
(2).
(3)1908和4187的最大公約數(shù)是53.
(4)用秦九韶算法計算多項式,當時的值.
(5)古代“五行”學說認為:“物質(zhì)分金,木,土,水,火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質(zhì)任意排成一列,設事件A表示“排列中屬性相克的兩種物質(zhì)不相鄰”,則事件A的概率為.
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,曲線C的參數(shù)方程是,(為參數(shù)).
(1)求直線被曲線C截得的弦長;
(2)從極點作曲線C的弦,求各弦中點軌跡的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《基礎教育課程改革綱要(試行)》將“具有良好的心理素質(zhì)”列入新課程的培養(yǎng)目標.為加強心理健康教育工作的開展,不斷提高學生的心理素質(zhì),九江市某校高二年級開設了《心理健康》選修課,學分為2分.學校根據(jù)學生平時上課表現(xiàn)給出“合格”與“不合格”兩種評價,獲得“合格”評價的學生給予50分的平時分,獲得“不合格”評價的學生給予30分的平時分,另外還將進行一次測驗.學生將以“平時分×40%+測驗分×80%”作為“最終得分”,“最終得分”不少于60分者獲得學分.
該校高二(1)班選修《心理健康》課的學生的平時份及測驗分結(jié)果如下:
測驗分 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
平時分50分人數(shù) | 0 | 3 | 4 | 4 | 2 | ||
平時分30分人數(shù) | 1 | 0 | 0 |
(1)根據(jù)表中數(shù)據(jù)完成如下2×2列聯(lián)表,并分析是否有95%的把握認為這些學生“測驗分是否達到60分”與“平時分”有關聯(lián)?
選修人數(shù) | 測驗分 達到60分 | 測驗分 未達到60分 | 合計 |
平時分50分 | |||
平時分30分 | |||
合計 |
(2)若從這些學生中隨機抽取1人,求該生獲得學分的概率.
附:,其中
0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當a=時,試判斷函數(shù)f(x)的單調(diào)性;
(2)設g(x)=,若g(x)有唯一零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為.現(xiàn)有甲、乙兩人從袋中輪流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即終止.若摸出白球,則記2分,若摸出黑球,則記1分.每個球在每一次被取出的機會是等可能的.
(1)求袋中白球的個數(shù);
(2)用表示甲,乙最終得分差的絕對值,求隨機變量的概率分布列及數(shù)學期望E.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市調(diào)查機構(gòu)在某設置過街天橋的路口隨機調(diào)查了110人準備過馬路的交通參與者對跨越護欄和走過街天橋的看法,得到如下列聯(lián)表:
男 | 女 | 合計 | |
走過街天橋 | 40 | 20 | 60 |
跨越護欄 | 20 | 30 | 50 |
合計 | 60 | 50 | 110 |
附:.
0.050 | 0.010 | 0.001 | |
K | 3.841 | 6.635 | 10.828 |
則可以得到正確的結(jié)論是( )
A.有99%以上的把握認為“選擇過馬路的方式與性別有關”
B.有99%以上的把握認為“選擇過馬路的方式與性別無關”
C.在犯錯誤的概率不超過0.1%的前提下,認為“選擇過馬路的方式與性別有關”
D.在犯錯誤的概率不超過0.1%的前提下,認為“選擇過馬路的方式與性別無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為積極響應國家“陽光體育運動”的號召,某學校在了解到學生的實際運動情況后,發(fā)起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議,為調(diào)查該校學生每周平均體育運動時間的情況,從高一高二(非畢業(yè)年級)與高三(畢業(yè)年級)共三個年級學生中按照的比例分層抽樣,收集位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時),得到如圖所示的頻率分布直方圖.(已知高一年級共有名學生)
(1)據(jù)圖估計該校學生每周平均體育運動時間,并估計高一年級每周平均體育運動時間不足小時的人數(shù);
(2)規(guī)定每周平均體育運動時間不少于小時記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數(shù)據(jù)中,有位高三學生的每周平均體育運動時間不少于小時,請完成下列列聯(lián)表,并判斷是否有的把握認為“該校學生的每周平均體育運動時間是否優(yōu)秀與畢業(yè)年級有關”?
非畢業(yè)年級 | 畢業(yè)年級 | 合計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
合計 |
附:.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com