【題目】如圖,正四棱錐中, ,側(cè)棱與底面所成角的正切值為

(1)若中點(diǎn),求異面直線所成角的正切值;

(2)求側(cè)面與底面所成二面角的大。

【答案】(1)(2)

【解析】試題分析:(1)線線角找平行:取BD中點(diǎn)O,由三角形中位線性質(zhì)得 ,就是異面直線PD與AE所成的角.再解三角形可得異面直線PD與AE所成角的正切值為;(2)作OF⊥AD,因?yàn)镻O⊥面ABCD,所以PF⊥AD,即得就是側(cè)面與底面所成二面角的平面角.再解三角形可得側(cè)面與底面所成二面角的大小為.

試題解析:解:(1)連結(jié)EO,由于O為BD中點(diǎn),E為PD中點(diǎn),所以, .∴ 就是異面直線PD與AE所成的角.

在Rt中, .∴

, 可知.所以,

在Rt中, ,

即異面直線PD與AE所成角的正切值為;

(2) 連結(jié)交于點(diǎn),連結(jié)PO,則PO⊥面ABCD,

∴ ∠PAO就是與底面所成的角,

∴ tan∠PAO=PO=AOtan∠PAO = =

設(shè)F為AD中點(diǎn),連FO、PF,

易知OF⊥AD,PF⊥AD,所以就是側(cè)面與底面所成二面角的平面角.

在Rt中, ,

,即側(cè)面與底面所成二面角的大小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

(1)求的解析式及單調(diào)減區(qū)間;

(2)是否存在常數(shù),使得對(duì)于定義域的任意恒成立,若存在,求出 的值;若

不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)都在軸上方,且.

1求橢圓的方程;

2當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線方程;

3對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無(wú)論如何變化,直線總經(jīng)過(guò)此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB兩城相距100 km,在兩地之間距Ax km處的D地建一核電站給AB兩城供電.為保證城市安全,核電站與城市距離不得少于10 km.已知供電費(fèi)用與供電距離的平方和供電量之積成正比,比例系數(shù)λ=0.25.若A城供電量為20億度/月,B城為10億度/月.

(1)求x的取值范圍;

(2)把月供電總費(fèi)用y表示成x的函數(shù);

(3)核電站建在距A城多遠(yuǎn),才能使供電費(fèi)用最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中, , , 分別為的中點(diǎn).

(1)求證: //平面

(2)若中點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A在直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),直線的方程為為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線和直線的極坐標(biāo)方程;

(2)若直線與曲線交于兩點(diǎn),求

已知不等式的解集為.

(1)求的值;

(2)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)).若直線與圓相交于不同的兩點(diǎn).

(1)寫(xiě)出圓的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;

(2)若弦長(zhǎng),求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中,若的三條邊長(zhǎng),則下列結(jié)論中正確的是( )

①存在,使、不能構(gòu)成一個(gè)三角形的三條邊

②對(duì)一切,都有

③若為鈍角三角形,則存在,使

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”越來(lái)越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成人數(shù)如下表.

年齡(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在[55,65)的概率.

參考數(shù)據(jù)如下:

附臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的觀測(cè)值: (其中

查看答案和解析>>

同步練習(xí)冊(cè)答案