在平面直角坐標(biāo)系xOy中,以O(shè)為圓心的圓與直線(xiàn)x-
3
y=4
相切.
(Ⅰ)求圓O的方程;
(Ⅱ)圓O與x軸相交于A(yíng),B兩點(diǎn),圓O內(nèi)的動(dòng)點(diǎn)P使|PA|,|PO|,|PB|成等比數(shù)列,求
PA
PB
的取值范圍;
(Ⅲ)已知D,E,F(xiàn)是圓O上任意三點(diǎn),動(dòng)點(diǎn)M滿(mǎn)足
OM
OD
OE
+(1-2λ)
OF
,λ=R,問(wèn)點(diǎn)M的軌跡是否一定經(jīng)過(guò)△DEF的重心(重心為三角形三條中線(xiàn)的交點(diǎn)),并證明你的結(jié)論.
分析:(I)利用圓心到直線(xiàn)的距離求圓的半徑,可得圓的標(biāo)準(zhǔn)方程;
(II)根據(jù)圓的方程求出A、B的坐標(biāo),利用|PA|,|PO|,|PB|成等比數(shù)列可得P點(diǎn)的坐標(biāo)滿(mǎn)足的條件,結(jié)合P是圓內(nèi)的點(diǎn),求出
PA
PB
的取值范圍;
(III)根據(jù)動(dòng)點(diǎn)M滿(mǎn)足
OM
OD
OE
+(1-2λ)
OF
,設(shè)DE的中點(diǎn)為N,利用向量運(yùn)算可得
FM
=2λ
FN
,說(shuō)明點(diǎn)M的軌跡是△DEF的中線(xiàn)FN所在的直線(xiàn),即軌跡一定經(jīng)過(guò)△DEF的重心.
解答:解:(Ⅰ)依題意,圓O的半徑r等于原點(diǎn)O到直線(xiàn)x-
3
y=4
的距離,
即r=
4
1+3
=2,∴圓O的方程為x2+y2=4.
(Ⅱ)不妨設(shè)A(x1,0),B(x2,0),x1<x2,令y=0得x2=4,
∴A(-2,0),B(2,0),
設(shè)P(x,y),由|PA|、|PO|、|PB|成等比數(shù)列,即:
(x+2)2+y2
×
(x-2)2+y2
=x2+y2
,
化簡(jiǎn)得:x2-y2=2,
PA
PB
=(-2-x,-y)•(2-x,-y)=x2-4+y2,
∵x2-y2=2
PA
PB
=2y2-2,
由于點(diǎn)P在圓O內(nèi),故
x2+y2<4
x2-y2=2
,由此得y2<1.
∴-2≤
PA
PB
=2y2-2<0,
PA
PB
的取值范圍是[-2,0);
(Ⅲ)設(shè)DE的中點(diǎn)為N,則
OD
OE
=2
ON
,
OM
OD
OE
+(1-2λ)
OF
,λ∈R,
OM
=2λ(
ON
-
OF
)+
OF

OM
-
OF
=2λ(
ON
-
OF
),
FM
=2λ
FN
,
∴F,N,M三點(diǎn)共線(xiàn),
即點(diǎn)M的軌跡是△DEF的中線(xiàn)FN所在的直線(xiàn),
故點(diǎn)M的軌跡一定經(jīng)過(guò)△DEF的重心.
點(diǎn)評(píng):本題考查了圓的標(biāo)準(zhǔn)方程,直線(xiàn)與圓的位置關(guān)系,考查了向量的數(shù)乘運(yùn)算與數(shù)量積運(yùn)算,考查了向量在幾何中的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線(xiàn)y=x+4上,半徑為2
2
的圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿(mǎn)足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A(yíng),B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線(xiàn)AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A(yíng)1,A2的任一點(diǎn),直線(xiàn)QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線(xiàn)l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案