【題目】袋子中有大小、形狀完全相同的四個(gè)小球,分別寫有“和”、“諧”、“!薄ⅰ皥@”四個(gè)字,有放回地從中任意摸出一個(gè)小球,直到“和”、“諧”兩個(gè)字都摸到就停止摸球,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止摸球的概率。利用電腦隨機(jī)產(chǎn)生之間取整數(shù)值的隨機(jī)數(shù),分別用,,,代表“和”、“諧”、“!、“園”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下組隨機(jī)數(shù):

由此可以估計(jì),恰好第三次就停止摸球的概率為( )

A. B. C. D.

【答案】B

【解析】

隨機(jī)模擬產(chǎn)生了18組隨機(jī)數(shù),其中第三次就停止摸球的隨機(jī)數(shù)有4個(gè),由此可以估計(jì),恰好第三次就停止摸球的概率.

隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

343 432 341 342 234 142 243 331 112

342 241 244 431 233 214 344 142 134

其中第三次就停止摸球的隨機(jī)數(shù)有:142,112,241,142,共4個(gè),

由此可以估計(jì),恰好第三次就停止摸球的概率為p

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)“文化強(qiáng)國(guó)建設(shè)”號(hào)召,并增加學(xué)生們對(duì)古典文學(xué)的學(xué)習(xí)興趣,雅禮中學(xué)計(jì)劃建設(shè)一個(gè)古典文學(xué)熏陶室.為了解學(xué)生閱讀需求,隨機(jī)抽取200名學(xué)生做統(tǒng)計(jì)調(diào)查.統(tǒng)計(jì)顯示,男生喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女生喜歡閱讀古典文學(xué)的有36人,不喜歡的有44.

(1)能否在犯錯(cuò)誤的概率不超過(guò)0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?

(2)為引導(dǎo)學(xué)生積極參與閱讀古典文學(xué)書籍,語(yǔ)文教研組計(jì)劃牽頭舉辦雅禮教育集團(tuán)古典文學(xué)閱讀交流會(huì).經(jīng)過(guò)綜合考慮與對(duì)比,語(yǔ)文教研組已經(jīng)從這200人中篩選出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男生代表和2名女生代表參加交流會(huì),記為參加交流會(huì)的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.

附:,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知f(x)=|x+a|(a∈R).

(1)若f(x)≥|2x﹣1|的解集為[0,2],求a的值;

(2)若對(duì)任意x∈R,不等式f(x)+|x﹣a|≥3a﹣2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是連續(xù)的偶函數(shù),且時(shí), 是單調(diào)函數(shù),則滿足的所有之積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,,的中點(diǎn).

(1)證明:平面;

(2)若點(diǎn)在棱上,且二面角,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某餐廳通過(guò)查閱了最近5次食品交易會(huì)參會(huì)人數(shù) (萬(wàn)人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計(jì)表:

第一次

第二次

第三次

第四次

第五次

參會(huì)人數(shù) (萬(wàn)人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.

(2)已知購(gòu)買原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,

投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無(wú)償返還,據(jù)悉本次交易大會(huì)大約有15萬(wàn)人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購(gòu)買多少袋原材料,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:利潤(rùn)銷售收入原材料費(fèi)用).

參考公式: .

參考數(shù)據(jù): , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列,若存在常數(shù)M>0,對(duì)任意的nN*,恒有,則稱數(shù)列B-數(shù)列.

(1)首項(xiàng)為1,公比q()的等比數(shù)列是否為B-數(shù)列?請(qǐng)說(shuō)明理由;

(2)設(shè)Sn是數(shù)列{xn}的前n項(xiàng)和,給出下列兩組論斷:

A組:①數(shù)列{xn}B-數(shù)列,②數(shù)列{xn}不是B-數(shù)列

B組:①數(shù)列{Sn}B-數(shù)列,②數(shù)列{Sn}不是B-數(shù)列

請(qǐng)以其中一組的一個(gè)論斷為條件,另一組的一個(gè)論斷為結(jié)論組成一個(gè)命題.判斷所給命題的真假,并證明你的結(jié)論.

(3)若數(shù)列{an}、都是B-數(shù)列,證明:數(shù)列{anbn}也是B-數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校2011年到2019年參加北約”“華約考試而獲得加分的學(xué)生人數(shù)(每位學(xué)生只能參加北約”“華約中的一種考試)可以通過(guò)以下表格反映出來(lái).(為了方便計(jì)算,將2011年編號(hào)為1,2012年編號(hào)為2,依此類推)

年份x

1

2

3

4

5

6

7

8

9

人數(shù)y

2

3

5

4

5

7

8

10

10

1)求這九年來(lái),該校參加北約”“華約考試而獲得加分的學(xué)生人數(shù)的平均數(shù)和方差;

2)根據(jù)最近五年的數(shù)據(jù),利用最小二乘法求出yx的線性回歸方程,并依此預(yù)測(cè)該校2020年參加北約”“華約考試而獲得加分的學(xué)生人數(shù).(最終結(jié)果精確至個(gè)位)

參考數(shù)據(jù):回歸直線的方程是,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線與直線平行,且過(guò)坐標(biāo)原點(diǎn),圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求直線和圓的極坐標(biāo)方程;

(2)設(shè)直線和圓相交于點(diǎn)、兩點(diǎn),求的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案