【題目】如圖,在四棱錐中,底面為直角梯形,,平面,是棱上的一點.

1)證明:平面平面

2)若,的中點,,,且二面角的正弦值為,求的值.

【答案】1)證明見解析(24

【解析】

(1)先證明,結(jié)合,推出平面,再根據(jù)面面垂直的判定定理證明出結(jié)論;

(2)為原點,,,分別為,,軸建立空間直角坐標(biāo)系,利用向量法結(jié)合夾角公式建立的關(guān)系式,求解即可.

(1)因為平面,平面,所以,

,,

所以平面,

平面,所以平面平面;

(2)為原點,,,分別為,,,建立如圖所示的空間直角坐標(biāo)系:

,,,,,,

(1)平面,,

的中點,,

,,

平面,

∴平面的一個法向量為,

,

,

,

設(shè)平面的法向量為,

,

,

,,,

∴平面的一個法向量,

∵二面角的正弦值為,

,

,

4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形是邊長為2的菱形,,的中點,以為折痕將折起到的位置,使得平面平面,如圖2.

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是橢圓的左、右焦點,點是該橢圓上一點,若當(dāng)時,面積達(dá)到最大,最大值為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)為坐標(biāo)原點,是否存在過左焦點的直線,與橢圓交于兩點,使得的面積為?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面是邊長為的菱形,,點E是棱BC的中點,,點P在平面ABCD的射影為O,F(xiàn)為棱PA上一點.

1求證:平面平面BCF;

2平面PDE,,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy22pxp0)的準(zhǔn)線方程為x=﹣1

1)求拋物線C的方程;

2)過拋物線C的焦點作直線l,交拋物線CA,B兩點,若線段AB中點的橫坐標(biāo)為6,求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=a1nxax+1aRa≠0).

1)求函數(shù)fx)的單調(diào)區(qū)間;

2)求證:n≥2,nN*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少兒游泳隊需對隊員進(jìn)行限時的仰臥起坐達(dá)標(biāo)測試.已知隊員的測試分?jǐn)?shù)與仰臥起坐

個數(shù)之間的關(guān)系如下:;測試規(guī)則:每位隊員最多進(jìn)行三組測試,每組限時1分鐘,當(dāng)一組測完,測試成績達(dá)到60分或以上時,就以此組測試成績作為該隊員的成績,無需再進(jìn)行后續(xù)的測試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計,隊員“喵兒”在一分鐘內(nèi)限時測試的頻率分布直方圖如下:

(1)計算值;

(2)以此樣本的頻率作為概率,求

①在本次達(dá)標(biāo)測試中,“喵兒”得分等于的概率;

②“喵兒”在本次達(dá)標(biāo)測試中可能得分的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下面類比推理:

①“若2a<2b,則a<b”類比推出“若a2<b2,則a<b”;

②“(a+b)c=ac+bc(c≠0)”類比推出“ (c≠0)”;

③“a,b∈R,若a-b=0,則a=b”類比推出“a,b∈C,若a-b=0,則a=b”;

④“a,b∈R,若a-b>0,則a>b”類比推出“a,b∈C,若a-b>0,則a>b(C為復(fù)數(shù)集)”.

其中結(jié)論正確的個數(shù)為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的頂點在坐標(biāo)原點,焦點在坐標(biāo)軸上.

1)若拋物線C經(jīng)過點,求C的標(biāo)準(zhǔn)方程;

2)拋物線C的焦點m是大于零的常數(shù)),若過點F的直線與C交于 兩點,,求面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案