(08年黃岡中學(xué)三模理)在中,已,又的面積等于6.

(Ⅰ)求的三邊之長(zhǎng);

(Ⅱ)設(shè)P(含邊界)內(nèi)一點(diǎn),P到三邊AB、BC、AB的距離為、,求的取值范圍.

解析:(Ⅰ)設(shè)三角形三內(nèi)角A、B、C對(duì)應(yīng)的三邊分別為a, b, c,

,∴,由正弦定理有,

又由余弦定理有,∴,即

所以為Rt,且.  

 

①÷②,得

a=4k, b=3k (k>0)

,∴三邊長(zhǎng)分別為3,4,5.  

(Ⅱ)以C為坐標(biāo)原點(diǎn),射線CAx軸正半軸建立直角坐標(biāo)系,則A、B坐標(biāo)為(3,0),(0,4),直線AB方程為

設(shè)P點(diǎn)坐標(biāo)為(x, y),則由P到三邊AB、BC、AB的距離為d1, d2d3可知

,且

,由線性規(guī)劃知識(shí)可知0≤m≤8,故d1+d2+d3的取值范圍是 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡中學(xué)三模理)設(shè)的極小值為,其導(dǎo)函數(shù)的圖像是經(jīng)過(guò)點(diǎn)開口向上的拋物線,如圖所示.

(Ⅰ)求的解析式;

(Ⅱ)若直線與函數(shù)有三個(gè)交點(diǎn),

求實(shí)數(shù)的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡中學(xué)三模)如圖,在直三棱柱ABCA1B1C1中, .

(Ⅰ)若DAA1中點(diǎn),求證:平面B1CD平面B1C1D

(Ⅱ)若二面角B1DCC1的大小為60°,求AD的長(zhǎng).

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡中學(xué)三模理)如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的一個(gè)交點(diǎn)為.

(Ⅰ)當(dāng)時(shí),求橢圓的方程及其右準(zhǔn)線的方程;

(Ⅱ)在(Ⅰ)的條件下,直線經(jīng)過(guò)橢圓的右焦點(diǎn),與拋物線交于,如果

以線段為直徑作圓,試判斷點(diǎn)P與圓的位置關(guān)系,并說(shuō)明理由;

(Ⅲ)是否存在實(shí)數(shù),使得△的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡中學(xué)三模)設(shè)數(shù)列{an},{bn}滿足,且.

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)對(duì)一切,證明成立;

(Ⅲ)記數(shù)列的前n項(xiàng)和分別為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡中學(xué)三模文)(本小題滿分13分)設(shè)的極小值為,其導(dǎo)函數(shù)的圖像是經(jīng)過(guò)點(diǎn)開口向上的拋物線,如圖所示.

(Ⅰ)求的解析式;

(Ⅱ)若,且過(guò)點(diǎn)(1,m)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案