已知函數(shù)圖象上一點(diǎn)處的切線方程為.
(1)求的值;
(2)若方程在內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中為自然對(duì)數(shù)的底數(shù));(3)令,若的圖象與軸交于(其中),的中點(diǎn)為,求證:在處的導(dǎo)數(shù)
(1) ;(2);(3)詳見(jiàn)解析.
【解析】
試題分析:(1)屬于簡(jiǎn)單題,利用函數(shù)在的導(dǎo)數(shù)值為斜率求解;(2)轉(zhuǎn)化為函數(shù)與軸有2個(gè)交點(diǎn),進(jìn)來(lái)轉(zhuǎn)化為求函數(shù)的最大值與最小值問(wèn)題,利用導(dǎo)數(shù)判函數(shù)的單調(diào)性滿足即可;(3)利用反證法求解,假設(shè)成立,由條件滿足,利用第1、2個(gè)條件求解值,結(jié)合第4個(gè)條件得到,再利用函數(shù)的單調(diào)性充分證明假設(shè)錯(cuò)誤,進(jìn)而得證在處的導(dǎo)數(shù).
試題解析:(1)
且
解得 3分
(2),令
則
令,得舍去).
當(dāng)時(shí),
是增函數(shù);
當(dāng)時(shí),
是減函數(shù); 5分
于是方程在內(nèi)有兩個(gè)不等實(shí)根的充要條件是:.
即 9分
(3)由題意
假設(shè)結(jié)論成立,則有:
11分
①-②,得
由④得
即,即⑤ 13分
令
則
在(0,1)增函數(shù),
⑤式不成立,與假設(shè)矛盾.
14分
考點(diǎn):1.利用導(dǎo)數(shù)判函數(shù)的單調(diào)性;2.函數(shù)的最值求解;3.反證法思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
(Ⅰ)求的值;(Ⅱ)若方程在內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中為自然對(duì)數(shù)的底數(shù),);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)圖象上一點(diǎn)處的切線方程為.
(Ⅰ)求的值;
(Ⅱ)若方程在內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中為自然對(duì)數(shù)的底數(shù));
(Ⅲ)令,若的圖象與軸交于,(其中),的中點(diǎn)為,求證:在處的導(dǎo)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本大題12分)已知函數(shù)圖象上一點(diǎn)處的切線方程為.(Ⅰ)求的值; (Ⅱ)若方程在內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年遼寧省高二下學(xué)期期中考試數(shù)學(xué)文卷 題型:解答題
. (滿分12分)
已知函數(shù)圖象上一點(diǎn)處的切線方程
為.
1)求的值;
2)若方程在內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中為自然對(duì)數(shù)的底數(shù));
3)令,若的圖象與軸交于,(其中),的中點(diǎn)為,求證:在處的導(dǎo)數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com