已知各項均為正數(shù)的數(shù)列{a
n}的前n項和為S
n,S
n=4-a
n,n∈N
*,數(shù)列{b
n}滿足b
n=log
2a
n.
(1)求a
n,b
n;
(2)設(shè)數(shù)列
的前n項和為T
n,求T
n.
分析:(1)當(dāng)n≥2時,a
n=S
n-S
n-1=(4-a
n)-(4-a
n-1),化為
=,利用等比數(shù)列的通項公式即可得出a
n;利用對數(shù)的運算法則即可得出b
n;
(2)利用“裂項求和”即可得出.
解答:解:(1)當(dāng)n=1時,由a
1=4-a
1,解得a
1=2;當(dāng)n≥2時,a
n=S
n-S
n-1=(4-a
n)-(4-a
n-1),化為
=,
∴數(shù)列{a
n}是以2為首項,
為公比的等比數(shù)列,∴
an=2×()n-1=2
2-n.
∴b
n=log
2a
n=
log222-n=2-n;
(2)由(1)可知:
=
=
(-),(n≠4,6).
∴T
n=
[(--)+(-)+(-)+…+
(-)+(-)]=
(----)=
---.
點評:本題考查了等比數(shù)列的通項公式、對數(shù)的運算法則、“裂項求和”等基礎(chǔ)知識與基本技能方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知各項均為正數(shù)的數(shù)列{a
n}滿足a
n+12=2a
n2+a
na
n+1,a
2+a
4=2a
3+4,其中n∈N
*.
(Ⅰ)求數(shù){a
n}的通項公式;
(Ⅱ)設(shè)數(shù){b
n}的前n項和T
n,令b
n=a
n2,其中n∈N
*,試比較
與
的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*.
(Ⅰ)求數(shù){an}的通項公式;
(Ⅱ)設(shè)數(shù){bn}的前n項和Tn,令bn=an2,其中n∈N*,試比較與的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:青島二模
題型:解答題
已知各項均為正數(shù)的數(shù)列{a
n}滿足a
n+12=2a
n2+a
na
n+1,a
2+a
4=2a
3+4,其中n∈N
*.
(Ⅰ)求數(shù){a
n}的通項公式;
(Ⅱ)設(shè)數(shù){b
n}的前n項和T
n,令b
n=a
n2,其中n∈N
*,試比較
與
的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測試卷(陳經(jīng)綸中學(xué))(解析版)
題型:解答題
已知各項均為正數(shù)的數(shù)列{a
n}滿足a
n+12=2a
n2+a
na
n+1,a
2+a
4=2a
3+4,其中n∈N
*.
(Ⅰ)求數(shù){a
n}的通項公式;
(Ⅱ)設(shè)數(shù){b
n}的前n項和T
n,令b
n=a
n2,其中n∈N
*,試比較
與
的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012年高考復(fù)習(xí)方案配套課標(biāo)版月考數(shù)學(xué)試卷(二)(解析版)
題型:解答題
已知各項均為正數(shù)的數(shù)列{a
n}滿足a
n+12=2a
n2+a
na
n+1,a
2+a
4=2a
3+4,其中n∈N
*.
(Ⅰ)求數(shù){a
n}的通項公式;
(Ⅱ)設(shè)數(shù){b
n}的前n項和T
n,令b
n=a
n2,其中n∈N
*,試比較
與
的大小,并加以證明.
查看答案和解析>>