二階矩陣M有特征值,其對(duì)應(yīng)的一個(gè)特征向量e=,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)變換成點(diǎn)
(1)求矩陣M;
(2)求矩陣M的另一個(gè)特征值及對(duì)應(yīng)的一個(gè)特征向量.
(1)(2),

試題分析:(1)由于二階矩陣M有特征值,其對(duì)應(yīng)的一個(gè)特征向量e=,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)變換成點(diǎn).所以通過假設(shè)二階矩陣,其中有四個(gè)變量,根據(jù)以上的條件特征值與特征向量,以及點(diǎn)通過矩陣的變換得到的點(diǎn),可得到四個(gè)相應(yīng)的方程,從而解得結(jié)論.
(2)求矩陣M的特征值,根據(jù)特征多項(xiàng)式.即,可求得的值,即可得另一個(gè)特征值.即可寫出相應(yīng)的一個(gè)特征向量.
試題解析:(1)解:(1)設(shè)M=,則由=6=,
即a+b=c+d=6. 
=,得,從而a+2b=8,c+2d=4.
由a+b =6及a+2b=8,解得a=4,b=2;
由c+d =6及c+2d=4,解得c=8,d=-2,
所以M=
(2)由(1)知矩陣的特征多項(xiàng)式為

,得矩陣的特征值為6與
當(dāng)時(shí),
故矩陣的屬于另一個(gè)特征值的一個(gè)特征向量為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩陣M,向量α,β=.
(1)求向量3αβ在TM作用下的象;
(2)求向量4-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,0),B(-2,0),C(-2,1).設(shè)k為非零實(shí)數(shù),矩陣M,N,點(diǎn)A、B、C在矩陣MN對(duì)應(yīng)的變換下得到點(diǎn)分別為A1B1、C1,△A1B1C1的面積是△ABC面積的2倍,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,設(shè)橢圓4x2y2=1在矩陣A對(duì)應(yīng)的變換下得到曲線F,求F的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

三階行列式中,元素的代數(shù)余子式的值是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若行列式,則         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩陣不存在逆矩陣,求實(shí)數(shù)的值及矩陣的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

關(guān)于的二元線性方程組的增廣矩陣經(jīng)過變換,最后得到的矩陣為,則二階行列式=        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求使等式=M成立的矩陣M.

查看答案和解析>>

同步練習(xí)冊(cè)答案