【題目】已知函數(shù), .
(1)當時,求函數(shù)的值域;
(2)如果對任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)是否存在實數(shù),使得函數(shù)的最大值為0,若存在,求出的值,若不存在,說明理由.
【答案】(1)[0,2];(2)(-∞,);(3)答案見解析.
【解析】試題分析:(1)由h(x)=-2(log3x-1)2+2,根據(jù)log3x∈[0,2],即可得值域;
(2)由,令t=log3x,因為x∈[1,9],所以t=log3x∈[0,2],得(3-4t)(3-t)>k對一切t∈[0,2]恒成立,利用二次函數(shù)求函數(shù)的最小值即可;
(3)由,假設最大值為0,因為,則有,求解即可.
試題解析:
(1)h(x)=(4-2log3x)·log3x=-2(log3x-1)2+2,
因為x∈[1,9],所以log3x∈[0,2],
故函數(shù)h(x)的值域為[0,2].
(2)由,
得(3-4log3x)(3-log3x)>k,
令t=log3x,因為x∈[1,9],所以t=log3x∈[0,2],
所以(3-4t)(3-t)>k對一切t∈[0,2]恒成立,
令,其對稱軸為,
所以當時, 的最小值為,
綜上,實數(shù)k的取值范圍為(-∞,)..
(3)假設存在實數(shù),使得函數(shù)的最大值為0,
由.
因為,則有,解得,所以不存在實數(shù),
使得函數(shù)的最大值為0.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , a1=1,an≠0,anan+1=4Sn﹣1.
(Ⅰ)求{an}的通項公式;
(Ⅱ)證明: + +…+ <2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:
①α>β的充分不必要條件是sinα>sinβ
②若a,b∈R,ab<0,則
③命題“若x+y≠5,則x≠2或y≠3”的否命題為假命題
④若a≠b,則a3+b3>a2b+ab2
其中真命題的序號是 . (請把所有真命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a為實數(shù),函數(shù),x∈R.
(I)當a=0時,求f(x)在區(qū)間[0,2]上的最大值和最小值;
(Ⅱ)求函數(shù)f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知線段AB的端點A的坐標為,端點B是圓: 上的動點.
(1)求過A點且與圓相交時的弦長為的直線的方程。
(2)求線段AB中點M的軌跡方程,并說明它是什么圖形。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點的橢圓C的左焦點F(﹣ ,0),右頂點A(2,0).
(1)求橢圓C的標準方程;
(2)斜率為 的直線l與橢圓C交于A、B兩點,求弦長|AB|的最大值及此時l的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓M:(x+1)2+y2= 的圓心為M,圓N:(x﹣1)2+y2= 的圓心為N,一動圓與圓M內(nèi)切,與圓N外切.
(Ⅰ)求動圓圓心P的軌跡方程;
(Ⅱ)過點(1,0)的直線l與曲線P交于A,B兩點,若 =﹣2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司一年需購買某種原料600噸,設公司每次都購買噸,每次運費為3萬元,一年的總存儲費為萬元,一年的總運費與總存儲費之和為(單位:萬元).
(1)試用解析式得表示成的函數(shù);
(2)當為何值時, 取得最小值?并求出的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com