【題目】已知拋物線,且,三點中恰有兩點在拋物線上,另一點是拋物線的焦點.

(1)求證:、、三點共線;

(2)若直線過拋物線的焦點且與拋物線交于、兩點,點軸的距離為,點軸的距離為,求的最小值

【答案】(1)見解析;(2)8.

【解析】分析:(1)先根據(jù)三點坐標判定三點與拋物線的位置,再確定三點坐標,利用兩直線的斜率相等判定三點共線;(2)設出直線方程,聯(lián)立直線和拋物線的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系、基本不等式進行求解

詳解:(1)由條件,可知,在拋物線上,是拋物線的焦點

所以 解得

所以,

所以,,所以,

所以、、三點共線.

(2)由條件可知,可設

代入,得,

,解得

,,則,

所以 ,

當且僅當,即時,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)是定義域為R上的奇函數(shù),當x0時,fx=x2+2x

1)求fx)的解析式;

2)若不等式ft﹣2+f2t+1)>0成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:

包裹重量(單位:

包裹件數(shù)

公司對近天,每天攬件數(shù)量統(tǒng)計如下表:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;

(2)(i)估計該公司對每件包裹收取的快遞費的平均值;

(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學期望,并判斷裁員是否對提高公司利潤更有利?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:的離心率為,點在橢圓C上.

1求橢圓C的方程;

2設動直線與橢圓C有且僅有一個公共點,判斷是否存在以原點O為圓心的圓,滿足此圓與相交兩點兩點均不在坐標軸上,且使得直線, 的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且對定義域上的任意,當時,,則(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)擬用10萬元投資甲、乙兩種商品.已知各投入萬元,甲、乙兩種商品分別可獲得萬元的利潤,利潤曲線,,如圖所示.

(1)求函數(shù)的解析式;

(2)應怎樣分配投資資金,才能使投資獲得的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某中學甲、乙兩班各隨機抽取 名同學,測量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計甲、乙兩班同學的身高情況,則下列結(jié)論正確的是( )

A. 甲班同學身高的方差較大 B. 甲班同學身高的平均值較大

C. 甲班同學身高的中位數(shù)較大 D. 甲班同學身高在 以上的人數(shù)較多

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x.

(1)判斷函數(shù)的奇偶性,并證明;

(2)用單調(diào)性的定義證明函數(shù)f(x)=2x在(0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了200人進行抽樣分析,得到如表(單位:人):

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(Ⅰ)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關(guān)?

(Ⅱ)①現(xiàn)從所抽取的30歲以上的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出3人贈送優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用共享單車的概率.

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案