【題目】已知函數(shù)fx)是定義域?yàn)?/span>R上的奇函數(shù),當(dāng)x0時(shí),fx=x2+2x

1)求fx)的解析式;

2)若不等式ft﹣2+f2t+1)>0成立,求實(shí)數(shù)t的取值范圍.

【答案】1fx=;(2)(,+∞).

【解析】

試題(1)運(yùn)用奇函數(shù)的定義,可得x0的解析式,進(jìn)而得到fx)的解析式;

2)求出fx)在R上遞增.不等式ft﹣2+f2t+1)>0即為f1+2t)>﹣ft﹣2=f2﹣t),即有1+2t2﹣t,解不等式即可得到所求范圍.

解:(1函數(shù)fx)是定義域?yàn)?/span>R上的奇函數(shù),

∴fx=﹣f﹣x

當(dāng)x0時(shí),fx=x2+2x

x0,則﹣x0f﹣x=﹣x2+2﹣x=x2﹣2x

∴fx=﹣f﹣x=2x﹣x2

∴fx=

2)當(dāng)x0時(shí),fx=x2+2x=x+12﹣1,

區(qū)間(0,+∞)在對(duì)稱軸x=﹣1的右邊,為增區(qū)間,

由奇函數(shù)的性質(zhì),可得fx)在R上遞增.

不等式ft﹣2+f2t+1)>0即為

f1+2t)>﹣ft﹣2=f2﹣t),

即有1+2t2﹣t,解得t

t的取值范圍是(,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,底面是邊長(zhǎng)為2的菱形,,四邊形是矩形,分別是的中點(diǎn).

(1)求證:平面平面

(2)若平面平面,,求平面與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四條直線兩兩相交,且不共點(diǎn),求證:這四條直線在同一平面內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】上饒市委、市政府在上饒召開(kāi)上饒市全面展開(kāi)新能源工程動(dòng)員大會(huì),會(huì)議動(dòng)員各方力量,迅速全面展開(kāi)新能源工程工作.某企業(yè)響應(yīng)號(hào)召,對(duì)現(xiàn)有設(shè)備進(jìn)行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了200件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是設(shè)備改造前的樣本的頻率分布直方圖,表1是設(shè)備改造后的樣本的頻數(shù)分布表.

(1)完成列聯(lián)表,并判斷是否有的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān);

設(shè)備改造前

設(shè)備改造后

合計(jì)

合格品

不合格品

合計(jì)

(2)根據(jù)圖1和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對(duì)改造前后設(shè)備的優(yōu)劣進(jìn)行比較;

(3)根據(jù)市場(chǎng)調(diào)查,設(shè)備改造后,每生產(chǎn)一件合格品企業(yè)可獲利200元,一件不合格品虧損150元,用頻率估計(jì)概率,則生產(chǎn)1000件產(chǎn)品企業(yè)大約能獲利多少元?

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為,且,圓軸交于點(diǎn),,為橢圓上的動(dòng)點(diǎn),,面積最大值為.

(1)求圓與橢圓的方程;

(2)圓的切線交橢圓于點(diǎn),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司擬設(shè)計(jì)一個(gè)扇環(huán)形狀的花壇(如圖所示),該扇環(huán)是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過(guò)點(diǎn),的兩條線段圍成.設(shè)圓弧和圓弧所在圓的半徑分別為米,圓心角為θ(弧度).

(1)若,,求花壇的面積;

(2)設(shè)計(jì)時(shí)需要考慮花壇邊緣(實(shí)線部分)的裝飾問(wèn)題,已知直線部分的裝飾費(fèi)用為60/米,弧線部分的裝飾費(fèi)用為90/米,預(yù)算費(fèi)用總計(jì)1200元,問(wèn)線段AD的長(zhǎng)度為多少時(shí),花壇的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù).

1)求的值并判斷的單調(diào)性;

2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 (nN*)的展開(kāi)式中第五項(xiàng)的系數(shù)的與第三項(xiàng)的系數(shù)的比是101.

(1)求展開(kāi)式中各項(xiàng)系數(shù)的和;

(2)求展開(kāi)式中含的項(xiàng);

(3)求展開(kāi)式中系數(shù)最大的項(xiàng)和二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,且,,三點(diǎn)中恰有兩點(diǎn)在拋物線上,另一點(diǎn)是拋物線的焦點(diǎn).

(1)求證:、、三點(diǎn)共線;

(2)若直線過(guò)拋物線的焦點(diǎn)且與拋物線交于、兩點(diǎn),點(diǎn)軸的距離為,點(diǎn)軸的距離為,求的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案