【題目】已知函數(shù)f(x)的定義域?yàn)椋?,+∞),f(2)=1,f(xy)=f(x)+f(y)且當(dāng)x>1時(shí),f(x)>0.
(1)判斷函數(shù)f(x)在其定義域(0,+∞)上的單調(diào)性并證明;
(2)解不等式f(x)+f(x﹣2)≤3.

【答案】
(1)解:函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞增.

證明如下:

設(shè)0<x1<x2,則 >1,

∵當(dāng)x>1時(shí),f(x)>0恒成立,f(x)+f( )=0,

∴f(x2)﹣f(x1)=f(x2)+f( )=f( )>0,

∴f(x1)<f(x2),

∴函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞增


(2)解:∵f(x)+f(x﹣2)≤3=f(8),且函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞增,

,解得:2<x≤4,

∴不等式f(x)+f(x﹣2)≤3的解集為{x|2<x≤4}


【解析】(1)設(shè)0<x1<x2 >1,依題意,利用單調(diào)性的定義可證得,函數(shù)f(x)在定義域(0,+∞)上單調(diào)遞增;(2)f(x)+f(x﹣2)≤3f(x)+f(x﹣2)≤f(8) ,解之即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程.

已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程為

(1)求直線l的傾斜角和曲線C的直角坐標(biāo)方程;

(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,其中R, …為自然對(duì)數(shù)的底數(shù)

)當(dāng)時(shí), 恒成立,求的取值范圍;

)求證: (參考數(shù)據(jù): )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,其中的中點(diǎn).

(1)求證:

(2)求證:面;

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為

(1)寫出直線和曲線的普通方程;

(2)已知點(diǎn)為曲線上的動(dòng)點(diǎn),求到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=﹣bx,其中a,b,c∈R且滿足a>b>c,f(1)=0.
(1)證明:函數(shù)f(x)與g(x)的圖象交于不同的兩點(diǎn);
(2)若函數(shù)F(x)=f(x)﹣g(x)在[2,3]上的最小值為9,最大值為21,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 是定義在R上的奇函數(shù),且f(1)=2.
(1)求實(shí)數(shù)a,b并寫出函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)與函數(shù)y=ex的圖象關(guān)于直線y=x對(duì)稱,函數(shù)y=g(x)的圖象與y=f(x)的圖象關(guān)于x軸對(duì)稱,若g(a)=1,則實(shí)數(shù)a的值為( )
A.﹣e
B.
C.
D.e

查看答案和解析>>

同步練習(xí)冊(cè)答案