已知拋物線y2=8x,過M(2,3)作直線l交拋物線于A、B.
(1)求以M(2,3)為中點(diǎn)的弦AB所在直線l的方程.
(2)設(shè)AB的中點(diǎn)為N,求N的軌跡方程.
分析:(1)由題知l的斜率存在設(shè)斜率為且k≠0,根據(jù)
y
2
1
=8x1,
y
2
2
=8x2,又
y1+y2
2
=3
,可得k=
y1-y2
x1-x2
的值,點(diǎn)斜式求得AB所在直線l的方程.
(2)設(shè)AB的中點(diǎn)N(x0,y0 ),由中點(diǎn)公式及 y12=8x1,y22=8x2,求出l的斜率k=
4
y0
,再根據(jù)中點(diǎn)N(x0,y0)在直線l上,得到y(tǒng)02-4x0-3y0+8=0,當(dāng)直線l斜率不存在時,中點(diǎn)為(2,0)滿足上述方程,從而得到中點(diǎn)N的軌跡方程為:y2-4x-3y+8=0.
解答:解:(1)由題知l的斜率存在設(shè)斜率為且k≠0,設(shè)A(x1,y1),B(x2,y2),∵A、B在y2=8x上,
y
2
1
=8x1,
y
2
2
=8x2,又
y1+y2
2
=3
,
∴由 (y1+y2)(y1-y2)=8(x1-x2),可得  k=
y1-y2
x1-x2
=
8
y1+y2
=
4
3
,
故AB所在直線l的方程為:y-3=
4
3
 (x-2),即  4x-3y+1=0. 
(2)設(shè)AB的中點(diǎn)N(x0,y0 ),A(x1,y1) B (x2,y2),∴x0=
x1+x2
2
,y0=
y1+y2
2

當(dāng)l斜率存在時,設(shè)斜率為k,直線方程為:y-3=k(x-2),∵A、B在y2=8x上,
∴y12=8x1,y22=8x2,∴(y1+y2)(y1-y2)=8(x1-x2),∴k=
y1-y2
x1-x2
=
8
y1+y2
=
4
y0

由N(x0,y0)在直線l上,∴y0-3=
4
y0
(x0-2),即
y
2
0
-4x0-3y0+8=0
,
又當(dāng)直線l斜率不存在時,直線方程為x=2,中點(diǎn)為(2,0)滿足上述方程,
所以,所求中點(diǎn)N的軌跡方程為:y2-4x-3y+8=0.
點(diǎn)評:本題考查直線和圓錐曲線的位置關(guān)系,軌跡方程的求法,體現(xiàn)了分類討論的數(shù)學(xué)思想,求出直線的斜率,是
解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=8x的準(zhǔn)線與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于A,B兩點(diǎn),雙曲線的一條漸近線方程是y=2
2
x
,點(diǎn)F是拋物線的焦點(diǎn),且△FAB是直角三角形,則雙曲線的標(biāo)準(zhǔn)方程是( 。
A、
x2
16
-
y2
2
=1
B、x2-
y2
8
=1
C、
x2
2
-
y2
16
=1
D、
x2
8
-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=8x與橢圓
x2
a2
+
y2
b2
=1有公共焦點(diǎn)F,且橢圓過點(diǎn)D(-
2
,
3
).
(1)求橢圓方程;
(2)點(diǎn)A、B是橢圓的上下頂點(diǎn),點(diǎn)C為右頂點(diǎn),記過點(diǎn)A、B、C的圓為⊙M,過點(diǎn)D作⊙M的切線l,求直線l的方程;
(3)過點(diǎn)A作互相垂直的兩條直線分別交橢圓于點(diǎn)P、Q,則直線PQ是否經(jīng)過定點(diǎn),若是,求出該點(diǎn)坐標(biāo),若不經(jīng)過,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)一模)已知拋物線y2=8x上一點(diǎn)P到焦點(diǎn)的距離是6,則點(diǎn)P的坐標(biāo)是
(4,±4
2
)
(4,±4
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知拋物線y2=8x的準(zhǔn)線l與雙曲線C:
x2
a2
-y2=1
相切,則雙曲線C的離心率e=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=8x的焦點(diǎn)是雙曲線
x2
a2
-
y2
3
 
=1(a>0)
的右焦點(diǎn),則雙曲線的漸近線方程為
 

查看答案和解析>>

同步練習(xí)冊答案