已知直線所經過的定點恰好是橢圓的一個焦點,且橢圓上的點到點的最大距離為8.則橢圓的標準方程為 .
解析試題分析:條件中給出一個直線系,需要先求出直線所過的定點,根據定點是橢圓的焦點,及橢圓C上的點到點F的最大距離為8,寫出橢圓中三個字母系數要滿足的條件,解方程組得到結果,寫出橢圓的方程解:由(1+4k)x-(2-3k)y-(3+12k)=0得(x-2y-3)+k(4x+3y-12)=0,由x-2y-3=0,4x+3y-12=0,解得F(3,0).設橢圓C的標準方程為(a>b>0),則,c=3,a+c=8,,解得解得 a=5,b=4,c=3,從而橢圓C的標準方程為。
考點:橢圓方程的求解
點評:本題考查直線與圓錐曲線之間的關系,題目中首先求橢圓的方程,這是這類題目常用的一種形式,屬于基礎題.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com