設(shè)是等差數(shù)列,若則數(shù)列前8項(xiàng)和為(     )
A.B.80C.64D.56
C

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035415494615.png" style="vertical-align:middle;" />,所以,那么.項(xiàng)和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列的前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正數(shù)數(shù)列中,,前項(xiàng)和為,對任意,、成等差數(shù)列.
(1)求;
(2)設(shè),數(shù)列的前項(xiàng)和為,當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為An和Bn,且=,則使得為整數(shù)的正整數(shù)n的個(gè)數(shù)是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an},如果數(shù)列{bn}滿足b1=a1,bn=an+an-1,n≥2,n∈N*,則稱數(shù)列{bn}是數(shù)列{an}的“生成數(shù)列”.
(1)若數(shù)列{an}的通項(xiàng)為an=n,寫出數(shù)列{an}的“生成數(shù)列”{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}的通項(xiàng)為cn=2n+b(其中b是常數(shù)),試問數(shù)列{cn}的“生成數(shù)列”{qn}是否是等差數(shù)列,請說明理由;
(3)已知數(shù)列{dn}的通項(xiàng)為dn=2n+n,求數(shù)列{dn}的“生成數(shù)列”{pn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知每項(xiàng)均大于零的數(shù)列{an}中,首項(xiàng)a1=1且前n項(xiàng)和Sn滿足Sn-Sn-1=2 (n∈N*且n≥2),則a81=(  )
A.638 B.639
C.640 D.641

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{an}的通項(xiàng)公式是an=-n2+12n-32,其前n項(xiàng)和是Sn,對任意的m,n∈N*m<n,則SnSm的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是見證魔術(shù)師“論證”64=65飛神奇.對這個(gè)乍看起來頗為神秘的現(xiàn)象,我們運(yùn)用數(shù)學(xué)知識不難發(fā)現(xiàn)其中的謬誤.另外,我們可以更換圖中的數(shù)據(jù),就能構(gòu)造出許多更加直觀與“令人信服”的“論證”.

請你用數(shù)列知識歸納:(1)這些圖中的數(shù)所構(gòu)成的數(shù)列:________;(2)寫出與這個(gè)魔術(shù)關(guān)聯(lián)的一個(gè)數(shù)列遞推關(guān)系式:________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等差數(shù)列{an}的首項(xiàng)a1=1,前三項(xiàng)之和S3=9,則數(shù)列{an}的通項(xiàng)公式an=________.

查看答案和解析>>

同步練習(xí)冊答案