已知菱形
的頂點
在橢圓
上,對角線
所在直線的斜率為1.
(Ⅰ)當直線
過點
時,求直線
的方程;
(Ⅱ)當
時,求菱形
面積的最大值.
Ⅰ)由題意得直線
的方程為
.
因為四邊形
為菱形,所以
.
于是可設直線
的方程為
.
由
得
.
因為
在橢圓上,
所以
,解得
.
設
兩點坐標分別為
,
則
,
,
,
.
所以
.
所以
的中點坐標為
.
由四邊形
為菱形可知,點
在直線
上,
所以
,解得
.
所以直線
的方程為
,即
.
(Ⅱ)因為四邊形
為菱形,且
,
所以
.
所以菱形
的面積
.
由(Ⅰ)可得
,
所以
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知四邊形
為菱形,
,兩個正三棱錐
(底面是正三角形且頂點在底面上的射影是底面正三角形的中心)的側(cè)棱長都相等,點
分別在
上,且
.
(Ⅰ)求證:
;
(Ⅱ)求平面
與底面
所成銳二面角的平面角的正切值;
(Ⅲ)求多面體
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)如圖,在梯形
中,
是
的中點,將
沿
折起,使點
到點
的位置,使二面角
的大小為
(1)求證:
;
(2)求直線
與平面
所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,
PC⊥平面
ABC,∠
ACB=90°,
D為
AB中點,
AC=
BC=
PC=2.
(Ⅰ)求證:
AB⊥平面
PCD;
(Ⅱ)求異面直線
PD與
BC所成角的大;
(Ⅲ)設
M為線段
PA上的點,且
AP=4
AM,求點
A到平面
BCM的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知:四棱錐P-ABCD,
,底面ABCD是直角梯形,
,且AB∥CD,
, 點F為線段PC的中點,
(1)求證: BF∥平面PAD;
(2) 求證:
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)如圖,正方形
所在的平面與平面
垂直,
是
和
的交點,
,且
.
(1)求證:
平面
; (2)求直線
與平面
所成的角的大;
(3)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知四棱錐
P—ABCD的底面
ABCD為等腰梯形,
AB//CD,AC⊥DB,AC與
BD相交于點
O,且頂點P在底面上的射影恰為
O點,又
BO=2,PO=,
PB⊥PD.(Ⅰ)求異面直線
PD與
BC所成角的余弦值;
(Ⅱ)求二面角
P—AB—C的大。
(Ⅲ)設點
M在棱
PC上,且
,問
為何值時,
PC⊥平面
BMD.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖四棱錐
中,
底面
,
正方形的邊長為2
(1)求點
到平面
的距離;
(2)求直線
與平面
所成角的大。
(3)求以
與
為半平面的二面角的正切值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
水平桌面兒上放置著一個容積為V的密閉長方體玻璃容器ABCD—A
1B
1C
1D
1,其中裝有
V的水。
(1)把容器一端慢慢提起,使容器的一條棱AD保持在桌面上,這個過程中水的形狀始終是柱體;(2)在(1)中的運動過程中,水面始終是矩形;(3)把容器提離桌面,隨意轉(zhuǎn)動,水面始終過長方體內(nèi)的一個定點;(4)在(3)中水與容器的接觸面積始終不變。
以上說法正確的是_____.
查看答案和解析>>