在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.已知曲線C1上的點(diǎn)M(1,)對(duì)應(yīng)的參數(shù)j=,曲線C2過(guò)點(diǎn)D(1,).
(I)求曲線C1,C2的直角坐標(biāo)方程;
(II)若點(diǎn)A(r1,q),B(r2,q+)在曲線C1上,求的值.
(1)曲線C1的方程為,曲線的方程為;(2).
解析試題分析:本題主要考查直角坐標(biāo)系與極坐標(biāo)系之間的轉(zhuǎn)化、參數(shù)方程與普通方程的互化,考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力.第一問(wèn),利用參數(shù)方程和普通方程的互化公式得到曲線的方程,先設(shè)出曲線的普通方程,將點(diǎn)轉(zhuǎn)化為直角坐標(biāo)代入所設(shè)的曲線的方程中,得到的值,即得到曲線的直角坐標(biāo)方程;第二問(wèn),因?yàn)辄c(diǎn)在曲線上,所以代入到的方程中,得到2個(gè)表達(dá)式,代入到所求的式子中即可.
試題解析:(I)將及對(duì)應(yīng)的參數(shù),
代入,得,
即,
所以曲線C1的方程為.
設(shè)圓的半徑為,由題意圓的方程為,(或).
將點(diǎn)代入,得,即,
(或由,得,代入,得),
所以曲線的方程為,或.
(Ⅱ)因?yàn)辄c(diǎn),在曲線上,
所以,,
所以.
考點(diǎn):1.參數(shù)方程與普通方程的互化;2.極坐標(biāo)與直角坐標(biāo)的互化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程是(為參數(shù));以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.
(1)寫(xiě)出直線的普通方程與圓的直角坐標(biāo)方程;
(2)由直線上的點(diǎn)向圓引切線,求切線長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線C的極坐標(biāo)方程為ρ=4cos θ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)曲線C與直線l相交于P,Q兩點(diǎn),以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為
(為參數(shù)).
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求點(diǎn)Q到直線的距離的最小值與最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線經(jīng)過(guò)伸縮變換得到曲線,設(shè)為曲線上任一點(diǎn),求的最小值,并求相應(yīng)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,已知圓的參數(shù)方程(為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)直線,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平面直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的極坐標(biāo)方程;
(Ⅱ)若直線與曲線相交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在直角坐標(biāo)系中,曲線的參數(shù)方程為(為非零常數(shù),為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,直線的方程為.
(Ⅰ)求曲線的普通方程并說(shuō)明曲線的形狀;
(Ⅱ)是否存在實(shí)數(shù),使得直線與曲線有兩個(gè)不同的公共點(diǎn),且(其中為坐標(biāo)原點(diǎn))?若存在,請(qǐng)求出;否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,以O(shè)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為,曲線的參數(shù)方程為,(為參數(shù),)。
(Ⅰ)求C1的直角坐標(biāo)方程;
(Ⅱ)當(dāng)C1與C2有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com