【題目】已知函數(shù),其中.

(1)試討論函數(shù)的單調(diào)性及最值;

(2)若函數(shù)不存在零點,求實數(shù)的取值范圍.

【答案】(1)見解析;(2)

【解析】試題分析:(1)討論函數(shù)單調(diào)性,先明確函數(shù)定義域然后求導解不等式即可,當然要注意參數(shù)的討論對導函數(shù)符號判斷的影響;(2)函數(shù)不存在零點,即函數(shù)的最大值恒小于零或者函數(shù)的最小值恒大于零,故先求出的最值然后解不等式即可.

(Ⅰ)由 得:

⑴當時, 單調(diào)遞增,

沒有最大值,也沒有最小值

⑵若

時, , 單調(diào)遞增

時, , 單調(diào)遞減,

所以當時, 取到最大值

沒有最小值

(Ⅱ)

時, , 單調(diào)遞增,

時, , 單調(diào)遞減,

所以當時 , 取到最大值,

時, 有 ,

所以要使沒有零點,

只需

所以實數(shù)的取值范圍是:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學生們旅游動機強烈,旅游可支配收入日益增多,可見大學生旅游是一個巨大的市場.為了解大學生每年旅游消費支出(單位:百元)的情況,相關(guān)部門隨機抽取了某大學的名學生進行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:

組別

頻數(shù)

(Ⅰ)求所得樣本的中位數(shù)(精確到百元);

(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認為學生的旅游費用支出服從正態(tài)分布,若該所大學共有學生人,試估計有多少位同學旅游費用支出在元以上;

(Ⅲ)已知樣本數(shù)據(jù)中旅游費用支出在范圍內(nèi)的名學生中有名女生, 名男生,現(xiàn)想選其中名學生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學期望.

附:若,則,

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對任意,都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知邊長為的正方形與菱形所在平面互相垂直, 中點.

(1)求證: 平面;

(2)若,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有甲、乙兩個桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在范圍內(nèi)(單位:毫米,以下同),按規(guī)定直徑在內(nèi)為優(yōu)質(zhì)品,現(xiàn)從甲、乙兩基地所采摘的桔柚中各隨機抽取500個,測量這些桔柚的直徑,所得數(shù)據(jù)整理如下:

(1)根據(jù)以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并回答是否有以上的把握認為

“桔柚直徑與所在基地有關(guān)”?

(2)求優(yōu)質(zhì)品率較高的基地的500個桔柚直徑的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表):

(3)經(jīng)計算,甲基地的500個桔柚直徑的樣本方差,乙基地的500個桔柚直徑的樣本方差,,并且可認為優(yōu)質(zhì)品率較高的基地采摘的桔柚直徑服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.由優(yōu)質(zhì)品率較高的種植基地的抽樣數(shù)據(jù),估計該基地采摘的桔柚中,直徑不低于86.78亳米的桔柚在總體中所占的比例.

附:,.

,則.

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018海南高三階段性測試(二模)如圖,在直三棱柱中, , ,點的中點,點上一動點.

I)是否存在一點,使得線段平面?若存在,指出點的位置,若不存在,請說明理由.

II)若點的中點且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,點在傾斜角為的直線上,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的方程為.

(1)寫出的參數(shù)方程及的直角坐標方程;

(2)設(shè)相交于兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】依據(jù)某地某條河流8月份的水文觀測點的歷史統(tǒng)計數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當?shù)氐牡刭|(zhì)構(gòu)造,得到水位與災害等級的頻率分布條形圖如圖(乙)所示.

試估計該河流在8月份水位的中位數(shù);

1)以此頻率作為概率,試估計該河流在8月份發(fā)生1級災害的概率;

2)該河流域某企業(yè),在8月份,若沒受1、2級災害影響,利潤為500萬元;若受1級災害影響,則虧損100萬元;若受2級災害影響則虧損1000萬元.

現(xiàn)此企業(yè)有如下三種應對方案:

方案

防控等級

費用(單位:萬元)

方案一

無措施

0

方案二

防控1級災害

40

方案三

防控2級災害

100

試問,如僅從利潤考慮,該企業(yè)應選擇這三種方案中的哪種方案?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為提高黔東南州的整體旅游服務質(zhì)量,州旅游局舉辦了黔東南州旅游知識競賽,參賽單位為本州內(nèi)各旅游協(xié)會,參賽選手為持證導游.現(xiàn)有來自甲旅游協(xié)會的導游3名,其中高級導游2名;乙旅游協(xié)會的導游3名,其中高級導游1名.從這6名導游中隨機選擇2人 參加比賽.

(Ⅰ)求選出的2人都是高級導游的概率;

(Ⅱ)為了進一步了解各旅游協(xié)會每年對本地經(jīng)濟收入的貢獻情況,經(jīng)多次統(tǒng)計得到,甲旅游協(xié)會對本地經(jīng)濟收入的貢獻范圍是(單位:萬元),乙旅游協(xié)會對本地經(jīng)濟收入的貢獻范圍是(單位:萬元),求甲旅游協(xié)會對本地經(jīng)濟收入的貢獻不低于乙旅游協(xié)會對本地經(jīng)濟收入的貢獻的概率.

查看答案和解析>>

同步練習冊答案