(2013•杭州一模)若正數(shù)x,y滿足x+y=1,則
4
x
+
1
y
的最小值為
9
9
分析:將x+y=1代入所求關(guān)系式,利用基本不等式即可求得答案.
解答:解:∵x>0,y>0,x+y=1,
4
x
+
1
y
=(
4
x
+
1
y
)(x+y)=4+1+
4y
x
+
x
y
≥5+2
4y
x
x
y
=9(當(dāng)且僅當(dāng)x=
2
3
,y=
1
3
時(shí)取等號(hào)).
故答案為:9.
點(diǎn)評(píng):本題考查基本不等式,將x+y=1代入所求關(guān)系式是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)若實(shí)數(shù)x,y滿足不等式組
y-x≥0
x+y-7≤0
,則2x+y的最大值為
21
2
21
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)函數(shù)f(x)=|logax|(0<a<1)的定義域?yàn)閇m,n](m<n),值域?yàn)閇0,1],若n-m的最小值為
1
3
,則實(shí)數(shù)a的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)等差數(shù)列{an}滿足:
sin2a3-cos2a3+cos2a3cos2a6-sin2a3sin2a6
sin(a4+a5)
=1,公差d∈(-1,0).若當(dāng)且僅當(dāng)n=9時(shí),數(shù)列{an}的前n項(xiàng)和Sn取得最大值,則首項(xiàng)a1取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)a∈R,則“a=4”是“直線l1:ax+2y-3=0與直線l2:2x+y-a=0平行”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)設(shè)等差數(shù)列{an}的前n項(xiàng)和是Sn,若-am<a1<-am+1(m∈N*,且m≥2),則必定有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案