3.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,則$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$上的投影為2.

分析 根據(jù)題意求出|$\overrightarrow{a}$+$\overrightarrow$|的值,求出向量($\overrightarrow{a}$+$\overrightarrow$)與$\overrightarrow{a}$的夾角為θ的余弦值,再利用數(shù)量積公式和向量投影的定義,即可求出向量$\overrightarrow{a}$+$\overrightarrow$在$\overrightarrow{a}$方向上的投影值.

解答 解:$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,
∴$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|×|$\overrightarrow$|×cos60°=1×2×$\frac{1}{2}$=1;
由此可得($\overrightarrow{a}$+$\overrightarrow$)2=|$\overrightarrow{a}$|2+2$\overrightarrow{a}$•$\overrightarrow$+|$\overrightarrow$|2=1+2+4=7,
∴|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{7}$;
設(shè)$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$的夾角為θ,
∵($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$=|$\overrightarrow{a}$|2+$\overrightarrow{a}$•$\overrightarrow$=1+1=2,
∴cosθ=$\frac{(\overrightarrow{a}+\overrightarrow)•\overrightarrow{a}}{|\overrightarrow{a}+\overrightarrow|×|\overrightarrow{a}|}$=$\frac{2}{\sqrt{7}×1}$=$\frac{2\sqrt{7}}{7}$,
可得向量$\overrightarrow{a}$+$\overrightarrow$在$\overrightarrow{a}$方向上的投影為:
|$\overrightarrow{a}$+$\overrightarrow$|cosθ=$\sqrt{7}$×$\frac{2\sqrt{7}}{7}$=2.
故答案為:2.

點評 本題考查了平面向量數(shù)量積的定義、向量的夾角公式以及模長、投影的概念與計算問題,屬于基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近于圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的(四舍五入精確到小數(shù)點后兩位)的值為( 。▍⒖紨(shù)據(jù):sin15°=0.2588,sin75°=0.1305)
A.3.10B.3.11C.3.12D.3.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)y=loga(x-3)-2過的定點是(4,-2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}\right.$,則f[f(4)]=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.對于定義域為D的函數(shù)y=f(x),如果存在區(qū)間[m,n]⊆D,同時滿足:
①f(x)在[m,n]上是單調(diào)函數(shù);
②當定義域是[m,n]時,f(x)的值域也是[m,n].
則稱[m,n]是該函數(shù)的“等域區(qū)間”.
(1)求證:函數(shù)$g(x)=3-\frac{5}{x}$不存在“等域區(qū)間”;
(2)已知函數(shù)$h(x)=\frac{(2a+2)x-1}{{{a^2}x}}$(a∈R,a≠0)有“等域區(qū)間”[m,n],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知集合A={(x,y)|x2+mx-y+2=0,x∈R},B={(x,y)|x-y+1=0,x∈R},若A∩B≠∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在平面直角坐標系中,已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-4,2),$\overrightarrow{c}$=(x,3),若(2$\overrightarrow{a}$+$\overrightarrow$)∥$\overrightarrow{c}$,則x=( 。
A.-2B.-4C.-3D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知點P是邊長為2的等邊三角形內(nèi)一點,它到三邊的距離分別為x、y、z,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.下列命題中:
①命題P:?x∈R使得2x2-1<0”,則¬P是假命題;
②“若x+y=0,則x,y互為相反數(shù)”的逆命題為假命題;
③?x∈R,若x>210,則x>2100”;
④命題“若p,則q”的逆否命題是“若¬q則¬p”,
其中真命題的序號是①④.

查看答案和解析>>

同步練習冊答案