18.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0)的一條漸近線為y=$\sqrt{3}$x,則離心率e等于(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

分析 由題意得$\frac{a}$=$\sqrt{3}$,利用e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=2,可得結(jié)論.

解答 解:由題意得$\frac{a}$=$\sqrt{3}$,
∴e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=2.
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的離心率的性質(zhì)和應(yīng)用,解題時(shí)要注意公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}的通項(xiàng)為an=log(n+1)(n+2)(n∈N*),我們把使乘積a1•a2•a3…an為整數(shù)的n叫做“優(yōu)數(shù)”,則在(1,2012]內(nèi)的所有“優(yōu)數(shù)”的和為2026.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若等比數(shù)列{an}滿足a2•a4=$\frac{1}{2}$,則a1a32a5=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)y=x${\;}^{-\frac{7}{4}}$的定義域?yàn)椋?,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖是水平放置的△ABC按“斜二測(cè)畫法”得到的直觀圖,其中B′O′=C′O′=$\sqrt{6}$,A′O′=$\frac{\sqrt{3}}{4}$,那么△ABC的面積是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{3\sqrt{2}}{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知等差數(shù)列{an}中,a1+a5=20,a9=20,則a6=(  )
A.15B.20C.25D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在銳角△ABC中,sinA=$\frac{2\sqrt{6}}{5}$,cosC=$\frac{5}{7}$,BC=7,若動(dòng)點(diǎn)P滿足$\overrightarrow{AP}$=$\frac{λ}{2}$$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),則點(diǎn)P軌跡與直線AB,AC所圍成的封閉區(qū)域的面積(  )
A.3$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓A:x2+(y+3)2=100,圓A內(nèi)一定點(diǎn)B(0,3),圓P過(guò)B且與圓A內(nèi)切,如圖所示,求圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.$\sqrt{1-2sin(\frac{π}{2}+2)cos(\frac{π}{2}+2)}$的值是( 。
A.sin2-cos2B.cos2-sin2C.-(sin2+cos2)D.sin2+cos2

查看答案和解析>>

同步練習(xí)冊(cè)答案