13.如圖是水平放置的△ABC按“斜二測畫法”得到的直觀圖,其中B′O′=C′O′=$\sqrt{6}$,A′O′=$\frac{\sqrt{3}}{4}$,那么△ABC的面積是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{3\sqrt{2}}{2}$D.3$\sqrt{2}$

分析 ′O′=C′O′=$\sqrt{6}$,A′O′=$\frac{\sqrt{3}}{4}$,直接計(jì)算△ABC即可.

解答 解:因?yàn)锽′O′=C′O′=$\sqrt{6}$,A′O′=$\frac{\sqrt{3}}{4}$,
所以△ABC的面積為$\frac{1}{2}×2\sqrt{6}×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{2}}{2}$.
故選C.

點(diǎn)評 本題考查斜二測畫法中原圖和直觀圖面積之間的關(guān)系,屬基本運(yùn)算的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題:若x+y≠5則x≠2或y≠3( 。
A.真命題B.假命題C.無法判斷真假D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.向量$\overrightarrow a$=(cosθ,sinθ),$\overrightarrow b$=(1,$\sqrt{3}$),則|${\overrightarrow a$-2$\overrightarrow b}$|的取值范圍是[3,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.△ABC中,角A,B,C所對的邊分別為a,b,c,已知A=60°,b=2,S△ABC=2$\sqrt{3}$,則$\frac{a+b+c}{sinA+sinB+sinC}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知點(diǎn)O是銳角△ABC的外心,a,b,c分別為內(nèi)角A、B、C的對邊,A=$\frac{π}{4}$,且$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=λ$\overrightarrow{OA}$,則λ的值為(  )
A.$\frac{{\sqrt{2}}}{2}$B.-$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0)的一條漸近線為y=$\sqrt{3}$x,則離心率e等于( 。
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等比數(shù)列{an}的前n項(xiàng)和Sn=$\frac{1}{2}$3n+1-a,則a等于( 。
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在銳角△ABC中,內(nèi)角A,B,C對邊分別為a,b,c,已知$\frac{sinB}{sinA+sinC}$=$\frac{c+b-a}{c+b}$
(1)求角C.
(2)求函數(shù)f(A)=$\frac{-2cos2A}{1+tanA}$+1的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x•f′(x)<0的解集為( 。
A.(-∞,-1)∪(0,1)B.(-2,-1)∪(1,2)C.(-1,0)∪(1,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案