精英家教網 > 高中數學 > 題目詳情

【題目】某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.

1)求甲、乙、丙三名同學都選高校的概率;

2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.

i)求甲同學選高校且乙、丙都未選高校的概率;

ii)記為甲、乙、丙三名同學中選高校的人數,求隨機變量的分布列及數學期望.

【答案】1 2)(iii)分布列見解析,

【解析】

1)先計算甲、乙、丙同學分別選擇D高校的概率,利用事件的獨立性即得解;

2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;

ii,利用事件的獨立性,分別計算對應的概率,列出分布列,計算數學期望即得解.

1)甲從五所高校中任選2所,共有

10種情況,

甲、乙、丙同學都選高校,共有四種情況,

甲同學選高校的概率為,

因此乙、丙兩同學選高校的概率為,

因為每位同學彼此獨立,

所以甲、乙、丙三名同學都選高校的概率為

2)(i)甲同學必選校且選高校的概率為,乙未選高校的概率為,

丙未選高校的概率為,因為每位同學彼此獨立,

所以甲同學選高校且乙、丙都未選高校的概率為

ii,

因此

,

的分布列為

0

1

2

3

因此數學期望為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知雙曲線C,O為坐標原點,FC的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線E過點,過拋物線E上一點作兩直線PMPN與圓C相切,且分別交拋物線EM、N兩點.

(1)求拋物線E的方程,并求其焦點坐標和準線方程;

(2)若直線MN的斜率為,求點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,有三根針和套在一根針上的個金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.

(1)每次只能移動一個金屬片;

(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.

個金屬片從1號針移到3號針最少需要移動的次數記為,則__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以直角坐標系的原點為極點,軸的非負半軸為極軸,建立極坐標系,并在兩種坐標系中取相同的長度單位.已知曲線的極坐標方程為,曲線的參數方程為為參數,),射線,分別與曲線交于極點外的三點.

1)求的值;

2)當時,兩點在曲線上,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若的導函數,討論的單調性;

(2)若是自然對數的底數),求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數方程為m為參數),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθ+)=1

1)求直線l的直角坐標方程和曲線C的普通方程;

2)已知點M 2,0),若直線l與曲線C相交于P、Q兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知無窮數列的前項中的最大項為,最小項為,設

1)若,求數列的通項公式;

2)若,求數列的前項和;

3)若數列是等差數列,求證:數列是等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)若函數處的切線垂直于軸,求函數的極值;

(Ⅱ)若函數有兩個零點,求實數的取值范圍,并證明:.

查看答案和解析>>

同步練習冊答案