(2013•東城區(qū)模擬)已知數(shù)列{an}滿足an=
(1-3a)n+10a,n≤6
an-7,n>6
(n∈N*),若{an}是遞減數(shù)列,則實(shí)數(shù)a的取值范圍是( 。
分析:依題意,an=
(1-3a)n+10a,n≤6
aa-7,n>6
(n∈N*),{an}是遞減數(shù)列,可知
1-3a<0
0<a<1
a6>a7
,解之即可得答案.
解答:解:∵an=
(1-3a)n+10a,n≤6
aa-7,n>6
(n∈N*),且{an}是遞減數(shù)列,
1-3a<0
0<a<1
a6>a7
,即
a>
1
3
0<a<1
(1-3a)×6+10a>a7-7=a0=1

解得
1
3
<a<
5
8

故選D.
點(diǎn)評(píng):本題考查數(shù)列的函數(shù)特性,求得
1-3a<0
0<a<1
a6>a7
是關(guān)鍵,也是難點(diǎn),考查理解與轉(zhuǎn)化能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)二模)如圖,△BCD是等邊三角形,AB=AD,∠BAD=90°,M,N,G分別是BD,BC,AB的中點(diǎn),將△BCD沿BD折疊到△BC′D的位置,使得AD⊥C′B.
(1)求證:平面GNM∥平面ADC′;
(2)求證:C′A⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)二模)已知函數(shù)f(x)=lnx+
a
x
(a>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)如果P(x0,y0)是曲線y=f(x)上的任意一點(diǎn),若以P(x0,y0)為切點(diǎn)的切線的斜率k≤
1
2
恒成立,求實(shí)數(shù)a的最小值;
(3)討論關(guān)于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的實(shí)根情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)二模)f(x)=
-
2
x
 ,   x<0
3+log2x ,  x>0
,則f(f(-1))等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)二模)根據(jù)表格中的數(shù)據(jù),可以斷定函數(shù)f(x)=lnx-
3
x
的零點(diǎn)所在的區(qū)間是( 。
x 1 2 e 3 5
lnx 0 0.69 1 1.10 1.61
3
x
3 1.5 1.10 1 0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)二模)對(duì)定義域的任意x,若有f(x)=-f(
1
x
)
的函數(shù),我們稱為滿足“翻負(fù)”變換的函數(shù),下列函數(shù):
y=x-
1
x

②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中滿足“翻負(fù)”變換的函數(shù)是
①③
①③
. (寫出所有滿足條件的函數(shù)的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案