精英家教網 > 高中數學 > 題目詳情
(2013•東城區(qū)二模)已知函數f(x)=lnx+
a
x
(a>0).
(1)求f(x)的單調區(qū)間;
(2)如果P(x0,y0)是曲線y=f(x)上的任意一點,若以P(x0,y0)為切點的切線的斜率k≤
1
2
恒成立,求實數a的最小值;
(3)討論關于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的實根情況.
分析:(1)求出原函數的定義域,求出函數的導函數,由導函數的零點把定義域分段,根據導函數的符號得原函數的單調區(qū)間;
(2)把原函數求導后直接得到斜率的表達式,代入k≤
1
2
后把參數a分離出來,然后利用二次函數求最值得到實數a的最小值;
(3)把f(x)=lnx+
a
x
代入f(x)=
x3+2(bx+a)
2x
-
1
2
,整理后得b=lnx-
1
2
x2+
1
2
,討論原方程的根的情況,即討論方程b=lnx-
1
2
x2+
1
2
的根的情況,引入輔助函數h(x)=lnx-
1
2
x2-b+
1
2
,求導得到函數在(0,+∞)上的最大值,由最大值大于0,等于0,小于0分析b的取值情況.
解答:解:(Ⅰ)函數f(x)=lnx+
a
x
(a>0)的定義域為(0,+∞),
f(x)=
1
x
-
a
x2
=
x-a
x2

因為a>0,由f(x)>0得x∈(a,+∞),由f(x)<0得x∈(0,a),
所以f(x)的單調遞增區(qū)間為(a,+∞),單調遞減區(qū)間為(0,a).
(Ⅱ)由題意,以P(x0,y0)為切點的切線的斜率k滿足
k=f(x0)=
x0-a
x02
1
2
(x0>0),
所以a≥-
1
2
x02+x0
對x0>0恒成立.
又當x0>0時,-
1
2
x02+x0=-
1
2
(x0-1)2+
1
2
1
2
,
所以a的最小值為
1
2

(Ⅲ)由f(x)=
x3+2(bx+a)
2x
-
1
2
,即lnx+
a
x
=
x3+2(bx+a)
2x
-
1
2

化簡得b=lnx-
1
2
x2+
1
2
(x∈(0,+∞)).
h(x)=lnx-
1
2
x2-b+
1
2
,則h(x)=
1
x
-x=
(1+x)(1-x)
x

當x∈(0,1)時,h(x)>0,
當x∈(1,+∞)時,h(x)<0,
所以h(x)在區(qū)間(0,1)上單調遞增,在區(qū)間(1,+∞)上單調遞減.
所以h(x)在x=1處取得極大值即最大值,最大值為h(1)=ln1-
1
2
×12-b+
1
2
=-b

所以 
 當-b>0,即b<0時,y=h(x) 的圖象與x軸恰有兩個交點,方程f(x)=
x3+2(bx+a)
2x
-
1
2
有兩個實根,
當b=0時,y=h(x) 的圖象與x軸恰有一個交點,方程f(x)=
x3+2(bx+a)
2x
-
1
2
有一個實根,
當b>0時,y=h(x) 的圖象與x軸無交點,方程f(x)=
x3+2(bx+a)
2x
-
1
2
無實根.
點評:本題考查了利用導數研究函數的單調性,考查了導數在求最值中的應用,訓練了分離變量法求參數的取值范圍,考查了數學轉化思想和分類討論的數學思想,屬難度稍大的題型.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•東城區(qū)二模)f(x)=
-
2
x
 ,   x<0
3+log2x ,  x>0
,則f(f(-1))等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東城區(qū)二模)根據表格中的數據,可以斷定函數f(x)=lnx-
3
x
的零點所在的區(qū)間是(  )
x 1 2 e 3 5
lnx 0 0.69 1 1.10 1.61
3
x
3 1.5 1.10 1 0.6

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東城區(qū)二模)對定義域的任意x,若有f(x)=-f(
1
x
)
的函數,我們稱為滿足“翻負”變換的函數,下列函數:
y=x-
1
x
,
②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中滿足“翻負”變換的函數是
①③
①③
. (寫出所有滿足條件的函數的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東城區(qū)二模)已知函數y=f(x)是定義在R上的奇函數,且當x∈(-∞,0)時,f(x)+xf′(x)<0(其中f′(x)是f(x)的導函數),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),則a,b,c的大小關系是( 。

查看答案和解析>>

同步練習冊答案