【題目】語(yǔ)文成績(jī)服從正態(tài)分布,數(shù)學(xué)成績(jī)的頻率分布直方圖如圖:

1)如果成績(jī)大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語(yǔ)文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?

2)如果語(yǔ)文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(1)中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望.

3)根據(jù)以上數(shù)據(jù),是否有99%的把握認(rèn)為語(yǔ)文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.

①若,則,.

0.050

0.040

0.010

0.005

0.001

0.455

0.708

6.635

7.879

10.828

【答案】1)語(yǔ)文成績(jī)特別優(yōu)秀的有人,數(shù)學(xué)成績(jī)特別優(yōu)秀的有人;(2)分布列見解析;;(3)有的把握認(rèn)為語(yǔ)文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.

【解析】

1)由正態(tài)分布曲線對(duì)稱性可求得,進(jìn)而計(jì)算得到語(yǔ)文特別優(yōu)秀的頻數(shù);由頻率分布直方圖計(jì)算可得數(shù)學(xué)特別優(yōu)秀對(duì)應(yīng)的頻率,進(jìn)而計(jì)算得到對(duì)應(yīng)頻數(shù);

2)根據(jù)超幾何分布概率公式計(jì)算可得所有可能取值對(duì)應(yīng)的概率,進(jìn)而得到分布列;根據(jù)數(shù)學(xué)期望計(jì)算公式計(jì)算可得結(jié)果;

3)由已知數(shù)據(jù)得到列聯(lián)表,計(jì)算可得,進(jìn)而得到結(jié)論.

1)設(shè)語(yǔ)文成績(jī)?yōu)?/span>,由可知:,,

,

名學(xué)生中,本次考試中語(yǔ)文成績(jī)特別優(yōu)秀的有.

由頻率分布直方圖知,數(shù)學(xué)成績(jī)特別優(yōu)秀的頻率為,

名學(xué)生中,本次考試中數(shù)學(xué)成績(jī)特別優(yōu)秀的有.

2)由(1)知,語(yǔ)文和數(shù)學(xué)只有一科特別優(yōu)秀的有.

所有可能的取值為:,

;;

;

的分布列為:

數(shù)學(xué)期望.

3)由題意可得列聯(lián)表如下:

語(yǔ)文特別優(yōu)秀

語(yǔ)文不特別優(yōu)秀

合計(jì)

數(shù)學(xué)特別優(yōu)秀

數(shù)學(xué)不特別優(yōu)秀

合計(jì)

,

的把握認(rèn)為語(yǔ)文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽取20名學(xué)生,其中8名女生中有3名報(bào)考理科,男生中有2名報(bào)考文科.

(1)根據(jù)以上信息,寫出列聯(lián)表;

(2)用假設(shè)檢驗(yàn)的方法分析有多大的把握認(rèn)為該中學(xué)的高三學(xué)生選報(bào)文理科與性別有關(guān)?

參考公式:

pK2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.07

2.71

3.84

5.02

6.64

7.88

10.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)處取得極值,對(duì), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若整數(shù)滿足:,稱為離實(shí)數(shù)最近的整數(shù),記作.給出函數(shù)的四個(gè)命題:

①函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>

②函數(shù)是周期函數(shù),最小正周期為;

③函數(shù)上是增函數(shù);

④函數(shù)的圖象關(guān)于直線對(duì)稱.

其中所有的正確命題的序號(hào)為()

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬(wàn)元)和銷售額(萬(wàn)元)數(shù)據(jù)如下:

超市

A

B

C

D

E

F

G

廣告費(fèi)支出

1

2

4

6

11

13

19

銷售額

19

32

40

44

52

53

54

參數(shù)數(shù)據(jù)及公式:,,,,,.

1)若用線性回歸模型擬合yx的關(guān)系,求y關(guān)于x的線性回歸方程;

2)用對(duì)數(shù)回歸模型擬合yx的關(guān)系,可得回歸方程:,經(jīng)計(jì)算得出線性回歸模型和對(duì)數(shù)模型的分別約為0.750.97,請(qǐng)用說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)A超市廣告費(fèi)支出為8萬(wàn)元時(shí)的銷售額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cy2=2pxp0)的焦點(diǎn)為F,直線y=kx+1)與C相切于點(diǎn)A|AF|=2

)求拋物線C的方程;

)設(shè)直線lCMN兩點(diǎn),TMN的中點(diǎn),若|MN|=8,求點(diǎn)Ty軸距離的最小值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,曲線的方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為為參數(shù)),交于,兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)設(shè)點(diǎn);若、成等比數(shù)列,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為F,過(guò)點(diǎn)的直線lE交于A,B兩點(diǎn).當(dāng)l過(guò)點(diǎn)F時(shí),直線l的斜率為,當(dāng)l的斜率不存在時(shí),.

1)求橢圓E的方程.

2)以AB為直徑的圓是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、是橢圓和雙曲線的公共焦點(diǎn),是他們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.

查看答案和解析>>

同步練習(xí)冊(cè)答案