【題目】在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數(shù)方程為為參數(shù)),交于,兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)設(shè)點;若、、成等比數(shù)列,求的值

【答案】(1) 曲線的直角坐標方程為,直線的普通方程為 ; (2)

【解析】

(1)由極坐標與直角坐標的互化公式和參數(shù)方程與普通方程的互化,即可求解曲線的直角坐標方程和直線的普通方程;

(2)把的參數(shù)方程代入拋物線方程中,利用韋達定理得,可得到,根據(jù)因為,,成等比數(shù)列,列出方程,即可求解.

(1)由題意,曲線的極坐標方程可化為,

又由,可得曲線的直角坐標方程為,

由直線的參數(shù)方程為為參數(shù)),消去參數(shù),得,

即直線的普通方程為

(2)把的參數(shù)方程代入拋物線方程中,得,

,設(shè)方程的兩根分別為,

,,可得

所以,,

因為,成等比數(shù)列,所以,即,

,解得解得(舍),

所以實數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,,若平面平面,則三棱錐外接球的表面積為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求的直角坐標方程;

2)若有且僅有三個公共點,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點O,左焦點為F1(-1,0)的橢圓C的左頂點為A,上頂點為B,F1到直線AB的距離為|OB|.

(1)求橢圓C的方程;

(2)如圖,若橢圓,橢圓,則稱橢圓C2是橢圓C1λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點M、N,試求弦長|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為0),過點的直線的參數(shù)方程為t為參數(shù)),直線與曲線C相交于A,B兩點.

)寫出曲線C的直角坐標方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】勒洛三角形是具有類似圓的“定寬性”的面積最小的曲線,它由德國機械工程專家,機構(gòu)運動學(xué)家勒洛首先發(fā)現(xiàn),其作法是:以等邊三角形每個頂點為圓心,以邊長為半徑,在另兩個頂點間作一段弧,三段弧圍成的曲邊三角形就是勒洛三角形,現(xiàn)在勒洛三角形中隨機取一點,則此點取自正三角形外的概率為( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,平面,底面四邊形為直角梯形,,,.

(Ⅰ)求證:平面平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)中點,在四邊形所在的平面內(nèi)是否存在一點,使得平面,若存在,求三角形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,若點A為函數(shù)上的任意一點,點B為函數(shù)上的任意一點.

(1)求AB兩點之間距離的最小值;

(2)若AB為函數(shù)與函數(shù)公切線的兩個切點,求證:這樣的點B有且僅有兩個,且滿足條件的兩個點B的橫坐標互為倒數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年將在日本東京舉辦第屆夏季奧林匹克運動會,簡稱為“奧運會”,為了解不同年齡的人對“奧運會”的關(guān)注程度,某機構(gòu)隨機抽取了年齡在歲之間的 人進行調(diào)查,經(jīng)統(tǒng)計,“年輕人”與“中老年人”的人數(shù)之比為.

關(guān)注

不關(guān)注

合計

年輕人

中老年人

合計

(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷是否有的把握認為是否關(guān)注“奧運會”與年齡段有關(guān);

(2)現(xiàn)采用分層抽樣的方法從中老年人中選取人進行問卷調(diào)查.若再從這人中選取人進行面對面詢問,求事件“選取的人中至少有人關(guān)注奧運會”的概率.

附參考公式:,其中臨界值表:

查看答案和解析>>

同步練習(xí)冊答案