【題目】已知函數(shù)f(x)=alnx﹣ax﹣3(a≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)+(a+1)x+4﹣e≤0對(duì)任意x∈[e,e2]恒成立,求實(shí)數(shù)a的取值范圍(e為自然常數(shù)).
【答案】
(1)解:f′(x)= ﹣a= = (x>0),
當(dāng)a>0時(shí),f(x)的單調(diào)增區(qū)間為(0,1],單調(diào)減區(qū)間為[1,+∞);
當(dāng)a<0時(shí),f(x)的單調(diào)增區(qū)間為[1,+∞),單調(diào)減區(qū)間為(0,1]
(2)解:令F(x)=alnx﹣ax﹣3+(a+1)x+4﹣e=alnx+x+1﹣e,則F′(x)= ,
若﹣a≤e,即a≥﹣e,
F(x)在[e,e2]上是增函數(shù),
F(x)max=F(e2)=2a+e2﹣e+1≤0,
a≤ (e﹣1﹣e2),無解.
若e<﹣a≤e2,即﹣e2≤a<﹣e,
F(x)在[e,﹣a]上是減函數(shù);在[﹣a,e2]上是增函數(shù),
F(e)=a+1≤0,即a≤﹣1.
F(e2)=2a+e2﹣e+1≤0,即a≤ (e﹣1﹣e2),
∴﹣e2≤a≤ (e﹣1﹣e2).
若﹣a>e2,即a<﹣e2,
F(x)在[e,e2]上是減函數(shù),
F(x)max=F(e)=a+1≤0,即a≤﹣1,
∴a<﹣e2,
綜上所述,a≤ (e﹣1﹣e2)
【解析】(1)先求導(dǎo),再分類討論即可得到函數(shù)的單調(diào)性;(2)令F(x)=alnx﹣ax﹣3+(a+1)x+4﹣e=alnx+x+1﹣e,從而求導(dǎo)F′(x)= ,再由導(dǎo)數(shù)的正負(fù)討論確定函數(shù)的單調(diào)性,從而求函數(shù)的最大值,從而化恒成立問題為最值問題即可.
【考點(diǎn)精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(1)證明:MN∥平面PAB;
(2)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在R上的函數(shù)的導(dǎo)函數(shù),且,則 的大小關(guān)系為( )
A. a<b<c B. b<a<c C. c<a<b D. c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有4個(gè)不同的小球,全部放入4個(gè)不同的盒子內(nèi),恰好有兩個(gè)盒子不放球的不同放法的總數(shù)為____________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin(2x+φ)(|φ|< )向左平移 個(gè)單位后是奇函數(shù),則函數(shù)f(x)在[0, ]上的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩名運(yùn)動(dòng)員的若干次訓(xùn)練成績(jī)中隨機(jī)抽取6次,分別為
甲:7.7,7.8,8.1,8.6,9.3,9.5
乙:7.6,8.0,8.2,8.5,9.2,9.5
(1)根據(jù)以上的莖葉圖,不用計(jì)算說一下甲乙誰的方差大,并說明誰的成績(jī)穩(wěn)定;
(2)從甲、乙運(yùn)動(dòng)員高于8.1分成績(jī)中各隨機(jī)抽取1次成績(jī),求甲、乙運(yùn)動(dòng)員的成績(jī)至少有一個(gè)高于9.2分的概率.
(3)經(jīng)過對(duì)甲、乙運(yùn)動(dòng)員若干次成績(jī)進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)甲運(yùn)動(dòng)員成績(jī)均勻分布在[7.5,9.5]之間,乙運(yùn)動(dòng)員成績(jī)均勻分布在[7.0,10]之間,現(xiàn)甲、乙比賽一次,求甲、乙成績(jī)之差的絕對(duì)值小于0.5分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的首項(xiàng),且,,.
(Ⅰ)證明:是等比數(shù)列;
(Ⅱ)若,數(shù)列中是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,寫出這三項(xiàng),若不存在說明理由.
(Ⅲ)若是遞增數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若樣本的平均數(shù)是,方差是,則對(duì)樣本,下列結(jié)論正確的是 ( )
A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25
C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若對(duì)于定義域內(nèi)的任意x1 , 總存在x2使得f(x2)<f(x1),則滿足條件的實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com