【題目】若樣本的平均數(shù)是,方差是,則對(duì)樣本,下列結(jié)論正確的是 ( )

A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25

C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2

【答案】C

【解析】

根據(jù)平均數(shù)和方差的定義和性質(zhì)進(jìn)行求解即可.

樣本1+x1,1+x2,1+x3,…,1+xn的平均數(shù)是12,方差為5,

∴1+x1+1+x2+1+x3+…+1+xn=12n,

即x1+x2+x3+…+xn=12n﹣n=11n,

方差S2=[(1+x1﹣12)2+(1+x2﹣12)2+…+(1+xn﹣12)2]=[(x1﹣11)2+(x2﹣11)2+…+(xn﹣11)2]=5,

(2+x1+2+x2+…+2+xn)==13,

樣本2+x1,2+x2,…,2+xn的方差S2=[(2+x1﹣13)2+(2+x2﹣13)2+…+(2+xn﹣13)2]

=[(x1﹣11)2+(x2﹣11)2+…+(xn﹣11)2]=5,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsin(θ+ )= a,曲線C2的參數(shù)方程為 (θ為參數(shù)).
(1)求C1的直角坐標(biāo)方程;
(2)當(dāng)C1與C2有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣ax﹣3(a≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)+(a+1)x+4﹣e≤0對(duì)任意x∈[e,e2]恒成立,求實(shí)數(shù)a的取值范圍(e為自然常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲罐中有3個(gè)紅球,2個(gè)白球和3個(gè)黑球,乙罐中有5個(gè)紅球,3個(gè)白球和3個(gè)黑球.先從甲罐中隨機(jī)取出一球放入乙罐,分別以,表示由甲罐取出的球是紅球,白球和黑球的事件;再?gòu)囊夜拗须S機(jī)取出一球,以表示由乙罐取出的球是紅球的事件,則下列結(jié)論中正確的是__________(寫(xiě)出所有正確結(jié)論的序號(hào)).

P(B)=;②;

事件B與事件A1相互獨(dú)立;

④A1,A2,A3是兩兩互斥的事件;

⑤P(B)的值不能確定,因?yàn)樗cA1,A2,A3中究竟哪一個(gè)發(fā)生有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}是等差數(shù)列,若 <﹣1,且它的前n項(xiàng)和Sn有最大值,那么當(dāng)Sn取的最小正值時(shí),n=(
A.11
B.17
C.19
D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在對(duì)人們休閑方式的一次調(diào)查中,其中主要休閑方式的選擇有看電視和運(yùn)動(dòng),現(xiàn)共調(diào)查了100人,已知在這100人中隨機(jī)抽取1人,抽到主要休閑方式為看電視的人的概率為。

(1)完成下列2×2列聯(lián)表;

休閑方式為看電視

休閑方式為運(yùn)動(dòng)

合計(jì)

女性

40

男性

30

合計(jì)

(2)請(qǐng)判斷是否可以在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為性別與休閑方式有關(guān)系?

參考公式

P(K2k)

0.25

0.15

0.10

0.025

0.010

0.005

k

1.323

2.072

2.706

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)在定義域[﹣1,1]是奇函數(shù),當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣3x2
(1)當(dāng)x∈[0,1],求f(x);
(2)對(duì)任意a∈[﹣1,1],x∈[﹣1,1],不等式f(x)≤2cos2θ﹣asinθ+1都成立,求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣mx(m∈R).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)m≥ 時(shí),設(shè)g(x)=2f(x)+x2的兩個(gè)極值點(diǎn)x1 , x2(x1<x2)恰為h(x)=lnx﹣cx2﹣bx的零點(diǎn),求y=(x1﹣x2)h′( )的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=aex+ +b(a>0).
(Ⅰ)求f(x)在[0,+∞)內(nèi)的最小值;
(Ⅱ)設(shè)曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y= ,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案