【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sin(A+C)=8sin2
(Ⅰ)求cosB;
(Ⅱ)若a+c=6,△ABC面積為2,求b.

【答案】解:(Ⅰ)sin(A+C)=8sin2 ,
∴sinB=4(1﹣cosB),
∵sin2B+cos2B=1,
∴16(1﹣cosB)2+cos2B=1,
∴(17cosB﹣15)(cosB﹣1)=0,
∴cosB= ;
(Ⅱ)由(1)可知sinB=
∵S△ABC= acsinB=2,
∴ac=
∴b2=a2+c2﹣2accosB=a2+c2﹣2× ×
=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,
∴b=2.
【解析】(Ⅰ)利用三角形的內(nèi)角和定理可知A+C=π﹣B,再利用誘導(dǎo)公式化簡sin(A+C),利用降冪公式化簡8sin2 ,結(jié)合sin2B+cos2B=1,求出cosB,
(Ⅱ)由(1)可知sinB= ,利用勾面積公式求出ac,再利用余弦定理即可求出b.
【考點(diǎn)精析】利用二倍角的正弦公式和余弦定理的定義對題目進(jìn)行判斷即可得到答案,需要熟知二倍角的正弦公式:;余弦定理:;;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著業(yè)的迅速發(fā)展計(jì)算機(jī)也在迅速更新?lián)Q代,平板電腦因使用和移動(dòng)便捷以及時(shí)尚新潮性,而備受人們尤其是大學(xué)生的青睞,為了解大學(xué)生購買平板電腦進(jìn)行學(xué)習(xí)的學(xué)習(xí)情況,某大學(xué)內(nèi)進(jìn)行了一次匿名調(diào)查,共收到1500份有效問卷.調(diào)查結(jié)果顯示700名女學(xué)生中有300人,800名男生中有400人擁有平板電腦.

(Ⅰ)完成下列列聯(lián)表:

(Ⅱ)分析是否有的把握認(rèn)為購買平板電腦與性別有關(guān)?

附:獨(dú)立性檢驗(yàn)臨界值表:

(參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)(其中),若函數(shù)的圖象與軸的任意兩個(gè)相鄰交點(diǎn)間的距離為,且函數(shù)的圖象過點(diǎn)

1)求的解析式;

2)求的單調(diào)增區(qū)間:

3)求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺(tái)形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10 cm,容器Ⅱ的兩底面對角線EG,E1G1的長分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))
(Ⅰ)將l放在容器Ⅰ中,l的一端置于點(diǎn)A處,另一端置于側(cè)棱CC1上,求l沒入水中部分的長度;
(Ⅱ)將l放在容器Ⅱ中,l的一端置于點(diǎn)E處,另一端置于側(cè)棱GG1上,求l沒入水中部分的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某園林基地培育了一種新觀賞植物,經(jīng)過了一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),

[80,90),[90,100]分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了

高度在[50,60),[90,100]的數(shù)據(jù)).

1)求樣本容量和頻率分布直方圖中的

2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機(jī)抽取3株,設(shè)隨機(jī)變量表示所抽取的3株高度在 [80,90) 內(nèi)的株數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,底面為菱形,,平面,分別是的中點(diǎn)。

(1)證明:

(2)若上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人承攬一項(xiàng)業(yè)務(wù),需做文字標(biāo)牌4個(gè),繪畫標(biāo)牌5個(gè),現(xiàn)有兩種規(guī)格的原料,甲種規(guī)格每張3m2,可做文字標(biāo)牌1個(gè),繪畫標(biāo)牌2個(gè),乙種規(guī)格每張2m2,可做文字標(biāo)牌2個(gè),繪畫標(biāo)牌1個(gè),求兩種規(guī)格的原料各用多少張,才能使總的用料面積最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線通過點(diǎn),且在點(diǎn)處的切線垂直于軸.

(1)用分別表示

(2)當(dāng)取得最小值時(shí),求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有xf′(x)>x2+3f(x),則不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集為(
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)

查看答案和解析>>

同步練習(xí)冊答案