【題目】若圓)上僅有個點到直線的距離為,則實數(shù)的取值范圍是( )

A. B. C. D.

【答案】B

【解析】圓心到直線距離為 ,所以要有個點到直線的距離為,需 ,選B.

點睛:與圓有關的長度或距離的最值問題的解法.一般根據(jù)長度或距離的幾何意義,利用圓的幾何性質(zhì)數(shù)形結合求解.

型】單選題
束】
15

【題目】為雙曲線的兩個焦點,若, , 是正三角形的三個頂點,則雙曲線的漸近線方程是( )

A. B. C. D.

【答案】C

【解析】若F1,F(xiàn)2,P(0,2b)是正三角形的三個頂點,

設F1c,0),F2(c,0),則|F1P|=,

∵F1、F2、P(0,2b)是正三角形的三個頂點,

=2c,c2+4b2=4c2,

∴c2+4(c2﹣a2)=4c2

∴c2=4a2,即c=2a,

b==a,

雙曲線的漸近線方程為y=±x,

即為

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面平面,側面是邊長為的等邊三角形,底面是矩形,且,則該四棱錐外接球的表面積等于__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:三棱錐中,側面垂直底面, 是底面最長的邊;圖1是三棱錐的三視圖,其中的側視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐的直觀圖的一部分,其中點平面內(nèi).

Ⅰ)請在圖2中將三棱錐的直觀圖補充完整,并指出三棱錐的哪些面是直角三角形;

Ⅱ)設二面角的大小為,求的值;

求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知與曲線相切的直線,與軸, 軸交于兩點, 為原點, , ,( .

1)求證: 相切的條件是: .

2)求線段中點的軌跡方程;

3)求三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,直三棱柱中, , , 為棱的中點.

(Ⅰ)探究直線與平面的位置關系,并說明理由;

(Ⅱ)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),圖中圓弧所在圓的圓心為點C,半徑為,且點P在圖中陰影部分(包括邊界)運動.,其中,則 的取值范圍是(

A. [2,3+] B. [2,3+] C. [3-, 3+] D. [3-, 3+]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖像如圖所示,則下列結論中一定成立的是(  )

A. 函數(shù)f(x)有極大值f(2)和極小值f(1) B. 函數(shù)f(x)有極大值f(-2)和極小值f(1)

C. 函數(shù)f(x)有極大值f(2)和極小值f(-2) D. 函數(shù)f(x)有極大值f(-2)和極小值f(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 的焦點為,準線為,三個點 , 中恰有兩個點在上.

(1)求拋物線的標準方程;

(2)過的直線交, 兩點,點上任意一點,證明:直線, 的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點的雙曲線 的右焦點為 ,右頂點為 ,( 為原點)

(1)求雙曲線 的方程;

(2)若直線 與雙曲線恒有兩個不同的交點 ,且,求 的取值范圍.

查看答案和解析>>

同步練習冊答案