已知橢圓C:=1(a>b>0)的左焦點(diǎn)為F(-1,0),離心率為,過點(diǎn)F的直線l與橢圓C交于A、B兩點(diǎn).

(1)求橢圓C的方程;

(2)設(shè)過點(diǎn)F不與坐標(biāo)軸垂直的直線交橢圓C于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.

(1)由題意可知:c=1,a2=b2+c2,e=,解得:a=,b=1,故橢圓的方程為:+y2=1.

(2)設(shè)直線AB的方程為y=k(x+1)(k≠0),

聯(lián)立,得,整理得

(1+2k2)x2+4k2x+2k2-2=0

∵直線AB過橢圓的左焦點(diǎn)F,

∴方程有兩個(gè)不等實(shí)根,記A(x1,y1),B(x2,y2),

AB的中點(diǎn)N(x0,y0),

則x1+x2,x0,y0,

垂直平分線NG的方程為y-y0=-(x-x0),令y=0,得xG=x0+ky0=-=-=-,

∵k≠0,∴-<xG<0.

∴點(diǎn)G橫坐標(biāo)的取值范圍為(-,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年泉州一中適應(yīng)性練習(xí)文)(12分)已知橢圓C=1(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為1的直線交橢圓CA,B兩點(diǎn),N為弦AB的中點(diǎn)。

(1)求直線ONO為坐標(biāo)原點(diǎn))的斜率KON ;

(2)對于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北重點(diǎn)中學(xué)4月月考理)(13分

已知橢圓C=1(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為1的直線交橢圓CA,B兩點(diǎn),N為弦AB

(1)求直線ONO為坐標(biāo)原點(diǎn))的斜率KON ;

1)           (2)對于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為1的直線交橢圓CA,B兩點(diǎn),N為弦AB的中點(diǎn)。

(1)求直線ONO為坐標(biāo)原點(diǎn))的斜率KON ;

(2)對于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為1的直線交橢圓CAB兩點(diǎn),N為弦AB的中點(diǎn)。

(1)求直線ONO為坐標(biāo)原點(diǎn))的斜率KON ;

(2)對于橢圓C上任意一點(diǎn)M ,試證:總存在角∈R)使等式:cossin成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖北省武漢市高三9月調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案