已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB的中點。

(1)求直線ONO為坐標原點)的斜率KON ;

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。

(1)

(2)見解析


解析:

 (1)設橢圓的焦距為2c,因為,所以有,故有。從而橢圓C的方程可化為:      ①                     ………2分

易知右焦點F的坐標為(),

據(jù)題意有AB所在的直線方程為:   ②                     ………3分

由①,②有:         ③

,弦AB的中點,由③及韋達定理有:

 

所以,即為所求。                                    ………5分

(2)顯然可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內(nèi)的向量,有且只有一對實數(shù),使得等式成立。設,由1)中各點的坐標有:

,所以

。                                   ………7分

又點在橢圓C上,所以有整理為。           ④

由③有:。所以

   ⑤

又A﹑B在橢圓上,故有                ⑥

將⑤,⑥代入④可得:。                                ………11分

對于橢圓上的每一個點,總存在一對實數(shù),使等式成立,而

在直角坐標系中,取點P(),設以x軸正半軸為始邊,以射線OP為終邊的角為,顯然 。

也就是:對于橢圓C上任意一點M ,總存在角∈R)使等式:cossin成立。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年泉州一中適應性練習文)(12分)已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB的中點。

(1)求直線ONO為坐標原點)的斜率KON ;

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年湖北重點中學4月月考理)(13分

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB

(1)求直線ONO為坐標原點)的斜率KON ;

1)           (2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CAB兩點,N為弦AB的中點。

(1)求直線ONO為坐標原點)的斜率KON ;

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖北省武漢市高三9月調(diào)研測試理科數(shù)學試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當l繞F轉(zhuǎn)到某一位置時,有成立?若存在,求出所有的P的坐標與l的方程;若不存在,說明理由.

 

查看答案和解析>>

同步練習冊答案