【題目】《中華人民共和國道路交通安全法》第47條規(guī)定:機動車行經人行橫道時,應當減速慢行;遇到行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”.下表是某十字路口監(jiān)控設備所抓拍的6個月內駕駛員不“禮讓斑馬線”行為的統(tǒng)計數據:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“禮讓斑馬線”駕駛員人數 | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)請根據表中所給前5個月的數據,求不“禮讓斑馬線”的駕駛員人數與月份之間的回歸直線方程;
(Ⅱ)若該十字路口某月不“禮讓斑馬線”駕駛員人數的實際人數與預測人數之差小于5,則稱該十字路口“禮讓斑馬線”情況達到“理想狀態(tài)”.試根據(Ⅰ)中的回歸直線方程,判斷6月份該十字路口“禮讓斑馬線”情況是否達到“理想狀態(tài)”?
(Ⅲ)若從表中3、4月份分別選取4人和2人,再從所選取的6人中任意抽取2人進行交規(guī)調查,求抽取的兩人恰好來自同一月份的概率.
參考公式: ,.
【答案】(Ⅰ);(Ⅱ)見解析;(Ⅲ)
【解析】試題分析:(Ⅰ)依題意,,根據公式求得的值,即可得到回歸直線方程;
(Ⅱ)由(Ⅰ)得當時,,即可根據題意作出判斷結論;
(Ⅲ)設3月份選取的4位駕駛的編號分別為:,,,,從4月份選取的2位駕駛員的編號分別為,,列出基本事件的總體,用古典概型及概率計算公式,即可求解概率.
試題解析:
(Ⅰ)依題意,,
,,
∴關于的線性回歸方程為:.
(Ⅱ)由(Ⅰ)得,當時,.
,故6月份該十字路口“禮讓斑馬線”情況達到“理想狀態(tài)”.
(Ⅲ)設3月份選取的4位駕駛的編號分別為:,,,,從4月份選取的2位駕駛員的編號分別為,,從這6人中任抽兩人包含以下基本事件:,,,,,,,,,,,,,,共15個基本事件,其中兩個恰好來自同一月份的包含7個基本事件,
∴所求概率.
科目:高中數學 來源: 題型:
【題目】如圖:橢圓的頂點為,左右焦點分別為,,
(1)求橢圓的方程;
(2)過右焦點的直線與橢圓相交于兩點,試探究在軸上是否存在定點,使得為定值?若存在求出點的坐標,若不存在請說明理由?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關規(guī)定:機動車行經人行橫道時,應當減速慢行;遇行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設備所抓拍的5個月內駕駛員不“禮讓斑馬線”行為統(tǒng)計數據:
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數 | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數據求違章人數y與月份之間的回歸直線方程+
(2)預測該路口7月份的不“禮讓斑馬線”違章駕駛員人數;
(3)交警從這5個月內通過該路口的駕駛員中隨機抽查了50人,調查駕駛員不“禮讓斑馬線”行為與駕齡的關系,得到如下2列聯表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計 | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
能否據此判斷有97.5的把握認為“禮讓斑馬線”行為與駕齡有關?
參考公式及數據:,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電視廠家準備在五一舉行促銷活動,現在根據近七年的廣告費與銷售量的數據確定此次廣告費支出.廣告費支出x(萬元)和銷售量y(萬臺)的數據如下:
(1)若用線性回歸模型擬合y與x的關系,求出y關于x的線性回歸方程(其中;參考方程:回歸直線,)
(2)若用模型擬合y與x的關系,可得回歸方程,經計算線性回歸模型和該模型的分別約為0.75和0.88,請用說明選擇哪個回歸模型更好;
(3)已知利潤z與x,y的關系為z=200y﹣x.根據(2)的結果回答:當廣告費x=20時,銷售量及利潤的預報值是多少?(精確到0.01)參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過拋物線:的焦點做直線交拋物線于,兩點,的最小值為2.
(1)求拋物線的標準方程;
(2)過,分別做拋物線的切線,兩切線交于點,且直線,分別與軸交于點,,記和的面積分別為和,求證:為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com