【題目】在四棱錐中,

(1)相交于點,且平面,求實數(shù)的值;

(2)若, 求二面角的正弦值.

【答案】(1)見解析;(2)

【解析】分析:(1) 易得,然后利用平面性質(zhì)易得實數(shù)的值;(2)先證明平面,為坐標原點,的方向為軸的正方向建 立空間直角坐標系,求出平面與平面的法向量,代入公式可得二面角的正弦值.

詳解:(1)因為,所以

因為,平面,平面平面,

所以

所以,即

(2)因為,可知為等邊三角形,

所以,又,

,所有

由已知,所以平面

如圖,以為坐標原點,的方向為軸的正方向建

立空間直角坐標系,設,則,

所以,則

設平面的一個法向量為,則有

,則,所以,

設平面的一個法向量為,由已知可得

 

,則,所以

所以

設二面角的平面角為,則

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點在以為直徑的圓上, 垂直與圓所在平面, 的垂心.

(1)求證:平面平面;

(2)若,點在線段上,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,且是函數(shù)的一個極值,求函數(shù)的最小值;

(Ⅱ)若,求證:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知頂點是坐標原點的拋物線的焦點軸正半軸上,圓心在直線上的圓軸相切,且關(guān)于點對稱.

(1)求的標準方程;

(2)過點的直線交于,與交于求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的極坐標方程和曲線的直角坐標方程;

(2)若直線與曲線交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

購買某種保險,每個投保人每年度向保險公司交納保費元,若投保人在購買保險的一年度內(nèi)出險,則可以獲得10 000元的賠償金.假定在一年度內(nèi)有10 000人購買了這種保險,且各投保人是否出險相互獨立.已知保險公司在一年度內(nèi)至少支付賠償金10 000元的概率為

)求一投保人在一年度內(nèi)出險的概率;

)設保險公司開辦該項險種業(yè)務除賠償金外的成本為50 000元,為保證盈利的期望不小于0,求每位投保人應交納的最低保費(單位:元)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條規(guī)定:機動車行經(jīng)人行橫道時,應當減速慢行;遇到行人正在通過人行橫道,應當停車讓行,俗稱“禮讓斑馬線”.下表是某十字路口監(jiān)控設備所抓拍的6個月內(nèi)駕駛員不“禮讓斑馬線”行為的統(tǒng)計數(shù)據(jù):

月份

1

2

3

4

5

6

不“禮讓斑馬線”駕駛員人數(shù)

120

105

100

85

90

80

(Ⅰ)請根據(jù)表中所給前5個月的數(shù)據(jù),求不“禮讓斑馬線”的駕駛員人數(shù)與月份之間的回歸直線方程

(Ⅱ)若該十字路口某月不“禮讓斑馬線”駕駛員人數(shù)的實際人數(shù)與預測人數(shù)之差小于5,則稱該十字路口“禮讓斑馬線”情況達到“理想狀態(tài)”.試根據(jù)(Ⅰ)中的回歸直線方程,判斷6月份該十字路口“禮讓斑馬線”情況是否達到“理想狀態(tài)”?

(Ⅲ)若從表中3、4月份分別選取4人和2人,再從所選取的6人中任意抽取2人進行交規(guī)調(diào)查,求抽取的兩人恰好來自同一月份的概率.

參考公式: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,點為橢圓上的動點,若的最大值和最小值分別為.

(I)求橢圓的方程

(Ⅱ)設不過原點的直線與橢圓 交于兩點,若直線的斜率依次成等比數(shù)列,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線.

(1)當時,求的單調(diào)區(qū)間;

(2)若對任意時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案